3. (6 points) Write the **limit definition** for the derivative of \(\log(x^2 + 2) \) with respect to \(x \). (There is no need to simplify or to attempt to find the limit.)

If \(f(x) = \log(x^2 + 2) \), then
\[
 f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
\]

So in this case the derivative is,

\[
\lim_{h \to 0} \frac{\log((x+h)^2 + 2) - \log(x^2 + 2)}{h}
\]

4. (9 points) Consider the function \(y = j(x) \) graphed below.

Fill in the blanks with all the labelled \(x \) values (if any) on the graph satisfying each of the specified conditions. If there are no values which satisfy the condition, write “none.”

- The function \(j \) is discontinuous here: \(g, h \)
- The function \(j \) is not differentiable here: \(b, d, g, h \)
- The function \(j' \) is zero here: none
- The function \(j' \) is negative here: \(e \)
- The function \(j'' \) is positive here: \(a \)