3. (6 points) Write the limit definition for the derivative of $\log \left(x^{2}+2\right.$) with respect to x. (There is no need to simplify or to attempt to find the limit.)

If $f(x)=\log \left(x^{2}+2\right)$, then $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
So in this case the derivative is,

- $\lim _{h \rightarrow 0} \frac{\log \left((x+h)^{2}+2\right)-\log \left(x^{2}+2\right)}{h}$

4. (9 points) Consider the function $y=j(x)$ graphed below.

Fill in the blanks with all the labelled x values (if any) on the graph satisfying each of the specified conditions. If there are no values which satisfy the condition, write "none."

- The function j is discontinuous here: \qquad
- The function j is not differentiable here: b, d, g, h
- The function j^{\prime} is zero here: none
- The function j^{\prime} is negative here: \qquad
- The function $j^{\prime \prime}$ is positive here: \qquad a

