6. (16 points) State whether each of the following statements are TRUE or FALSE. For each statement, give an explanation. If the statement is false, give an example that shows a contradiction to the statement. If the statement is true, show why it is true. Examples may be formulas or graphs. Explain your reasoning.
(a) If $f^{\prime}(x)$ is increasing, then $f(x)$ is also increasing.

FALSE
Consider the function $f(x)=x^{2}$. We know that $f^{\prime \prime}(x)>0$ for all x (so that $f^{\prime}(x)$ is increasing), but $f^{\prime}(x)=2 x$ is less than 0 for $x<0$ so that f is decreasing for $x<0$.
(b) If $f(x) \neq g(x)$ for all x, then $f^{\prime}(x) \neq g^{\prime}(x)$.

FALSE
Consider $f(x)=x+1$ and $g(x)=x+2$. Then $f^{\prime}(x)=g^{\prime}(x)=1$ even though $f(x) \neq g(x)$.
(c) There is a function which is continuous on [1,5] but not differentiable at $x=3$.

TRUE
The function $f(x)=|x-3|$ is one such function.
(d) If a function is increasing on an interval, then it is concave up on that interval.

FALSE
The function $f(x)=\ln x$ is a counterexample.

