7. (7 points) Use the function

$$
g(x)=x^{\sin (x)}
$$

to give the limit definition for $g^{\prime}(2)$ [No need to simplify or approximate the limit.]

$$
g^{\prime}(2)=\lim _{h \rightarrow 0} \frac{(2+h)^{\sin (2+h)}-2^{\sin (2)}}{h}
$$

8. (7 points) The figure below shows $y=f(x)$ and a line tangent to f at $x=0.5$. Given that $f(0.5)=2, f^{\prime}(0.5)=-3$, and $h=0.1$, determine the values of y_{1}, y_{2}, and x_{2}. [Note: x and y are different scales on the graph.]

$$
\begin{gathered}
y_{1}=\frac{2}{} \\
y_{2}=\frac{1.7}{} \\
x_{2}= \\
0.6
\end{gathered}
$$

