1. (2 points each) For each of the following, circle all statements which **MUST** be true.

(a) Let \(f \) be a non-decreasing differentiable function defined for all \(x \).

- \(f'(x) \geq 0 \) for all \(x \).
- \(f''(x) \geq 0 \) for all \(x \).
- \(f(x) = 0 \) for some \(x \).

(b) Let \(f \) and \(g \) be continuous at \(x = -1 \), with \(f(-1) = 0 \) and \(g(-1) = 3 \).

- \(f \cdot g \) is continuous at \(x = -1 \).
- \(\frac{g}{f} \) is continuous at \(x = -1 \).
- \(\frac{f}{g} \) is continuous at \(x = -1 \).

(c) Let \(f \) be differentiable at \(x = 2 \), with \(f(2) = 17 \).

- \(\lim_{x \to 2} f(x) = 17 \).
- \(\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = 17 \).
- \(\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} \) exists.

(d) Let \(f \) be defined on \([a, b]\) and differentiable on \((a, b)\), with \(f'(x) < 0 \) for all \(x \) in \((a, b)\).

- If \(a < c < d < b \), then \(f(c) > f(d) \).
- \(f''(x) > 0 \) for some \(x \) in \((a, b)\).
- \(f \) is continuous on \((a, b)\).

(e) Let \(f \) be a twice-differentiable function that is concave-up on \((a, b)\), with \(f(a) = 4 \) and \(f(b) = 1 \).

- For some \(x \) in \((a, b)\), \(f(x) = 2.5 \).
- For all \(x \) in \((a, b)\), \(f''(x) \geq 0 \).
- \(f'(a) \leq f'(b) \).