1. (2 points each) For each of the following, circle all statements which MUST be true.
(a) Let f be a non-decreasing differentiable function defined for all x.

- $f^{\prime}(x) \geq 0$ for all x.
- $f^{\prime \prime}(x) \geq 0$ for all x.
- $f(x)=0$ for some x.
(b) Let f and g be continuous at $x=-1$, with $f(-1)=0$ and $g(-1)=3$.
- $f \cdot g$ is continuous at $x=-1$.
- $\frac{g}{f}$ is continuous at $x=-1$.
- $\frac{f}{g}$ is continuous at $x=-1$.
(c) Let f be differentiable at $x=2$, with $f(2)=17$.
- $\lim _{x \rightarrow 2} f(x)=17$.
- $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=17$.
- $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$ exists.
(d) Let f be defined on $[a, b]$ and differentiable on (a, b), with $f^{\prime}(x)<0$ for all x in (a, b).
- If $a<c<d<b$, then $f(c)>f(d)$.
- $f^{\prime \prime}(x)>0$ for some x in (a, b).
- f is continuous on (a, b).
(e) Let f be a twice-differentiable function that is concave-up on (a, b), with $f(a)=4$ and $f(b)=1$.
- For some x in $(a, b), f(x)=2.5$.
- For all x in $(a, b), f^{\prime \prime}(x) \geq 0$.
- $f^{\prime}(a) \leq f^{\prime}(b)$.

