- 1. (2 points each) For each of the following, circle *all* statements which **MUST** be true.
 - (a) Let f be a non-decreasing differentiable function defined for all x.
 - $f'(x) \ge 0$ for all x.
 - $f''(x) \ge 0$ for all x.
 - f(x) = 0 for some x.
 - (b) Let f and g be continuous at x = -1, with f(-1) = 0 and g(-1) = 3.
 - $f \cdot g$ is continuous at x = -1.

 - $\frac{g}{f}$ is continuous at x = -1. $\frac{f}{g}$ is continuous at x = -1.
 - (c) Let f be differentiable at x = 2, with f(2) = 17.
 - $\bullet \quad \lim_{x \to 2} f(x) = 17.$
 - $\lim_{h \to 0} \frac{f(2+h) f(2)}{h} = 17.$
 - $\lim_{h \to 0} \frac{f(2+h) f(2)}{h}$ exists.
 - (d) Let f be defined on [a, b] and differentiable on (a, b), with f'(x) < 0 for all x in (a, b).
 - If a < c < d < b, then f(c) > f(d).
 - f''(x) > 0 for some x in (a, b).
 - f is continuous on (a, b).
 - (e) Let f be a twice-differentiable function that is concave-up on (a, b), with f(a) = 4 and f(b) = 1.
 - For some x in (a, b), f(x) = 2.5. For all x in (a, b), $f''(x) \ge 0$.

 - $f'(a) \le f'(b)$.