4. (6 points) A certain state has been setting the date for its primary election using a function $P(x)$, where x is the number of years since 1992 and $P(x)$ is the number of days from the beginning of the year when the primary was held. (Count January 1 as one day from the beginning.) The pattern of elections is given in the table:

x	0	4	8	12	16
$P(x)$	96	48	24	12	6

Assuming that P is either linear or exponential, write a formula for $P(x)$ which accurately reflects the data in the table. If this trend continues, when will the primary be held in 2012? Show your work.

First, P cannot be linear, since $\frac{P(4)-P(0)}{4-0}=\frac{48-96}{4-0}=-12$, but $\frac{P(8)-P(4)}{8-4}=\frac{24-48}{8-4}=-6$. Assuming P is exponential, then, write $P(x)=C \cdot b^{x}$. Since $P(0)=C$, we have $C=96$. Since

$$
\frac{P(4)}{P(0)}=\frac{C \cdot b^{4}}{C \cdot b^{0}}=b^{4}
$$

we have $b^{4}=48 / 96=1 / 2$, so $b=\sqrt[4]{1 / 2} \approx 0.84$. (Note: taking the negative 4th root $b=-0.84$ doesn't make sense in the context of the problem.) Thus

$$
P(x)=96(\sqrt[4]{1 / 2})^{x} \approx 96(0.84)^{x},
$$

and when $x=20$ (i.e, the year 2012) $P(x)=3$. The primary will take place on January $3^{\text {rd }}$ in 2012.
5. (8 points) On the axes below, carefully sketch the graph of a continuous function $f(x)$ with the following properties:

- f is an even function (that is, $f(-x)=f(x)$).
- $f(0)=1$.
- $f^{\prime}(x)=-2$ on $(-2,0)$.
- $f^{\prime}(x)<0$ for $x>2$.
- $f^{\prime \prime}(x)>0$ for $x<-2$.
- $\lim _{x \rightarrow \infty} f(x)=-1$.

Your graph should be as accurate as possible. (You won't be graded on your draftsmanship, though!)

