1. Air pressure, P, decreases exponentially with the height, h, in meters above sea level. The unit of air pressure is called an atmosphere; at sea level, the air pressure is 1 atm .
(a) (5 points) On top of Mount McKinley, at a height of 6198 meters above sea level, the air pressure is approximately 0.48 atm . Use this to determine the air pressure 12 km above sea level, the maximum cruising altitude of a commercial jet.

Since we know P is a decreasing exponential function of h,

$$
P(h)=P_{0} e^{k h}
$$

for some constants k and P_{0}. Plugging in $h=0$, we find that $P_{0}=1$. Plugging in $h=6198$, we obtain the equation

$$
0.48=e^{6198 k}
$$

Taking the natural logarithm of both sides and dividing by 6198, we find $k \approx-1.184 \cdot 10^{-4}$. Using this value of k, we find that

$$
P(12000)=e^{-12000 k} \approx 0.241 \mathrm{~atm} .
$$

(b) (4 points) Determine $P^{-1}(0.7)$. Include units!

We know that $P^{-1}(0.7)$ gives us the height above sea level at which the air pressure is 0.7 atm . Thus, we want to solve the equation

$$
0.7=e^{-1.184 \cdot 10^{-4} h}
$$

for h. Thus,

$$
\ln 0.7=-1.184 \cdot 10^{-4} h,
$$

so $h=\frac{\ln 0.7}{-1.184 \cdot 10^{-4}} \approx 3012.46 \mathrm{~m}($ or $\approx 3.012 \mathrm{~km})$.

