6. Let $f(x)=\sin x$ where x is in degrees.
(a) (4 points) Write down a formula for $f^{\prime}(180)$ using the limit definition of the derivative.

$$
f^{\prime}(180)=\lim _{h \rightarrow 0} \frac{\sin (180+h)-\sin (180)}{h}=\lim _{h \rightarrow 0} \frac{\sin (180+h)}{h}
$$

(b) (3 points) Use the limit definition to approximate $f^{\prime}(180)$ to 3 decimals. Show how you obtained your answer.

Plugging $h=0.1$ into $\frac{\sin (180+h)}{h}$, we find it is approximately -0.01745 . Plugging $h=0.01$ yields the same approximation (-0.01745).
Also, letting $h=-0.01$, we have ≈-0.01745.
Thus, we can say

$$
f^{\prime}(180) \approx-0.0175
$$

(c) (2 points) What is the exact value of $f^{\prime}(90)$? Justify your answer geometrically.

The tangent line at $x=90$ is horizontal, so $f^{\prime}(90)=0$.
(d) (2 points) Let $g(x)=\sin x$ where x is in radians. Determine a continuous function $h(x)$ such that for all $x, f(x)=g(h(x))$.

$$
h(x)=\frac{\pi}{180} x
$$

[Note: This answer is not unique.]

