7. Table 1 below shows some values of the function f(x). Assume that both f' and f'' are defined on [-1,7].

Table 1						Ta	Table 2										
1	$\frac{x}{f(x)}$	0	1	2	3	4	5	6		x	0	1	2	3	4	5	6
	f(x)	-2	1	5	12	15	16	13	Ĵ	f'(x)							

(a) (4 points) Use the data given in Table 1 to fill in approximate values of f' in Table 2. Possible answers (depending on whether one takes left, right, or averages) are:

$\frac{x}{f'(x)}$	0	1	2	3	4	5	6	
f'(x)	3	4	7	3	1	-3		
							<u>.</u>	
x	0	1	2	3	4	5	6	
$\frac{x}{f'(x)}$		3	4	7	3	1	-3	
$\begin{array}{c} x \\ f'(x) \end{array}$	0	1	2	3	4	5	6	
f'(x)		3.5	5.5	5	2	-1		

[Only the intermediate points on the table were checked on this portion of the problem.]

(b) (1 point) Where does the rate of change of f seem greatest?

Anywhere in [2,3] is acceptable.

(c) (2 points) What is the largest interval over which the table indicates that f is concave up?

(0,3)