8. A continuous function f, defined for all x, is always decreasing and concave up. Suppose $f(6)=-6$ and $f^{\prime}(6)=-1.5$.
(a) (2 points) How many zeros does f have? Justify your answer.

The function f is always decreasing, so it has at most one zero.
On the other hand, since it is concave up, f always lies above the line $y=-1.5 x+3$ (the line tangent to f at the point $(6,-6)$). In particular, f takes positive values. It also takes negative values (e.g. at $x=6$) and is continuous, and so must cross the x-axis somewhere. Thus, f has at least one zero, and combining this with the first statement we conclude that f has precisely one zero.
(b) (2 points) Can $f^{\prime}(2)=-1$? Justify your answer.

Since f is concave up, f^{\prime} must be increasing. Since $f^{\prime}(6)=-1.5$, we must have $f^{\prime}(2) \leq-1.5$.

Therefore, the answer is NO.
(c) (4 points) Circle all intervals below in which f has at least one zero. Justify your choices with a picture and a short description.
i. $(-\infty,-6)$
ii. $[-6,-2)$
iii. $[-2,-1)$
iv. $[-1,1)$
v. $[1,2)$
vi. $[2,6)$
vii. $[6, \infty)$

From the reasoning given for part (a), we know f lies above the line tangent to f at $x=6$. Thus, the smallest x at which f could have a zero is at 2 . If f decreases quickly enough, it could have a zero arbitrarily close to (but to the left of) $x=6$.

