1. [13 points] For each problem below, circle ALL of the statements that MUST be true. (The four parts (a)-(d) are independent of each other. No explanations are required.)
a. [3 points] Suppose $f$ is a differentiable function which is concave up on its entire domain, $(-\infty, \infty)$.

- $\lim _{x \rightarrow 1} f(x)=f(1)$.
- $f(2) \geq f(1)$.
- $f^{\prime}(2) \geq f^{\prime}(1)$.
b. [3 points] Suppose that $h(t)$ gives the height of a ball, measured in feet above ground level, $t$ seconds after it is thrown off a bridge. Assume that the derivative of $h$ is given by the formula $h^{\prime}(t)=-32 t+64$.
- The ball reaches its maximum height 2 seconds after being thrown.
- The ball reaches a maximum height of 64 feet from the ground.
- The bridge is 64 feet off the ground.
c. [4 points] Suppose that $A$ and $B$ are positive constants and $A<B$.
- $\left(\ln e^{A}\right)\left(\ln e^{B}\right)=A+B$
- $\ln \left(10^{-A}\right)<0$
- $\ln \left(A^{2}+B\right)=2 \ln A+\ln B$
- $\log A<\log B$
d. [3 points] Suppose that $f(x)=-A e^{-B x}$ for some positive constants $A$ and $B$.
- $f^{\prime}(x)>0$ for all $x$
- $f^{\prime}$ is increasing
- $f$ is increasing

