10. [8 points]

According to US Census Data, the population of the city of Detroit has been declining since 1950. Suppose that $P=f(t)$ is the population of the city of Detroit (in millions of people) t years after 1950. The table below gives some values of $P=f(t)$.

t	0	10	20	30	40	50
P	1.8496	1.6701	1.5115	1.2033	1.0280	0.9513

a. [4 points]

Use the table to estimate the derivative of $f^{-1}(P)$ at $P=1.61$. Be sure to include units with your answer.
Solution: The points $(10,1.6701)$ and $(20,1.5115)$ are the closest to $P=1.61$, so we will use these for our estimate. Slopes for f^{-1} are of the form $\frac{\Delta t}{\Delta P}$ (since P is the input of f^{-1} and t is the output). Between our two points, we have

$$
\frac{\Delta t}{\Delta P}=\frac{20-10}{1.5115-1.6701} \approx-63.05
$$

so the derivative of $f^{-1}(P)$ at $P=1.61$ is approximately -63.05 years per million people.
b. [4 points]

Suppose Detroit's population decays exponentially starting in 1990. In what year will Detroit have a population of 650,000 people?

Solution: We have two points in the period starting in 1990, namely $(40,1.0280)$ and $(50,0.9513)$. We will use these to find the exponential decay rate. In ten years, the population multiplies by $\frac{0.9513}{1.0280}$, so in one year, the population multiplies by $\left(\frac{0.9513}{1.0280}\right)^{\frac{1}{10}}$. If we let N be the number of years since 1990, then a formula for P after 1990 is given by

$$
P=1.0280\left(\left(\frac{0.9513}{1.0280}\right)^{\frac{1}{10}}\right)^{N} \approx 1.0280(0.992276)^{N} .
$$

Set $P=0.65$ and solve for N using logs.

$$
\begin{gathered}
0.65=1.0280\left(\left(\frac{0.9513}{1.0280}\right)^{\frac{1}{10}}\right)^{N} . \\
\ln \left(\frac{0.65}{1.0280}\right)=N \ln \left(\left(\frac{0.9513}{1.0280}\right)^{\frac{1}{10}}\right) . \\
\frac{\ln \left(\frac{0.65}{1.0280}\right)}{\ln \left(\left(\frac{0.913}{1.0280}\right)^{\frac{1}{10}}\right)}=N \approx 59.11 .
\end{gathered}
$$

Thus, if the population is decaying exponentially, there will be 650,000 people in Detroit in the year 2049, or 59.11 years after 1990 .

