8. [10 points] The graphs of two functions f and g are shown below, along with a table of values for a function h.

x	-3	-2	-1	0	1	2	3
$h(x)$	15	2	-5	-6	-1	10	27

a. [4 points] Compute each of the following.

- $h(g(1))=$ \qquad

Solution: $h(g(1))=h(0)=-6$

- $f(1+h(1))=$ \qquad

Solution: $f(1+h(1))=f(1+(-1))=f(0)=0$
b. [3 points] There exists a number B so that $f^{\prime}(x)=g(x+B)$. Find B.

Solution: Since f is flat at $x=-2, x=0$, and $x=1$, we know f^{\prime} has zeroes at these spots. Since g has zeroes at $x=1, x=3$, and $x=4$, we need to shift g to the left by 3 to get f^{\prime}. Thus, $B=3$.
c. [3 points] Is it possible that $f^{\prime \prime}=h$? Briefly justify your answer.

Solution: No. At $x=1, f$ is concave up, so $f^{\prime \prime}(1) \geq 0$, but $h(1)=-1$.

