8. [10 points] The graphs of two functions f and g are shown below, along with a table of values for a function h.

x	-3	-2	-1	0	1	2	3
h(x)	15	2	-5	-6	-1	10	27

- **a**. [4 points] Compute each of the following.
 - h(g(1)) = _____

Solution: h(g(1)) = h(0) = -6

• f(1+h(1)) =______

Solution: f(1 + h(1)) = f(1 + (-1)) = f(0) = 0

b. [3 points] There exists a number B so that f'(x) = g(x+B). Find B.

Solution: Since f is flat at x = -2, x = 0, and x = 1, we know f' has zeroes at these spots. Since g has zeroes at x = 1, x = 3, and x = 4, we need to shift g to the left by 3 to get f'. Thus, B = 3.

c. [3 points] Is it possible that f'' = h? Briefly justify your answer. Solution: No. At x = 1, f is concave up, so $f''(1) \ge 0$, but h(1) = -1.