5. [12 points] A paperback book (definitely not a valuable calculus textbook, of course) is dropped from the top of Dennison hall (which is 40 m high) towards a very large, upward pointing fan. The average velocity of the book between time $t=0$ and later times is shown in the table of data below (in which t is in seconds and the velocities are in m / s).

$$
\begin{array}{r|ccccc}
\text { between } t=0 \text { seconds and } t= & 1 & 2 & 3 & 4 & 5 \\
\hline \text { average velocity is } & -5 & -10 & -11.67 & -9 & -7.2
\end{array}
$$

a. [8 points] Fill in the following table of values for the height $h(t)$ of the book (measured in meters). Show how you obtain your values.

| t | 0 | 1 | 2 | 3 | 4 | 5 | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $h(t)$ | 40 | - | | | | | |

b. [4 points] Based on your work from (a), is $h^{\prime \prime}(1)>0,<0$, or $=0$? Is $h^{\prime \prime}(3)>0,<0$, or $=0$? Explain.

