2. [12 points] Consider the following table giving values, rounded to three decimal places, of a function $f(x)$.

x	0	0.5	1
$f(x)$	0	0.247	0.841

a. [3 points] Estimate $f^{\prime}(1)$. Be sure it is clear how you obtain your answer.

Solution: We can estimate the derivative $f^{\prime}(1)$ with a difference quotient taking $h=$ $-0.5: f^{\prime}(1) \approx \frac{0.841-0.247}{1-0.5}=1.188$.
b. [4 points] Estimate $f^{\prime \prime}(1)$. Again, be sure that it is clear how you obtain your answer.

Solution: We procede similarly to part (a), but need the value of $f^{\prime}(0.5)$ to complete the difference quotient. Using a central difference for $f^{\prime}(0.5)$ we have $f^{\prime}(0.5) \approx \frac{0.841-1}{1}=$ 0.841 , so that

$$
f^{\prime \prime}(1) \approx \frac{f^{\prime}(1)-f^{\prime}(0.5)}{1-0.5}=\frac{1.188-0.841}{0.5}=0.694
$$

Alternately, if we use $h=-0.5$ for $f^{\prime}(0.5)$ as well as for $f^{\prime}(1)$, we have $f^{\prime}(0.5) \approx \frac{.247-0}{0.5-0}=$ 0.494, so that

$$
f^{\prime \prime}(1) \approx \frac{f^{\prime}(1)-f^{\prime}(0.5)}{1-0.5}=\frac{1.188-0.494}{1-0.5}=1.388
$$

c. [3 points] Estimate $f(1.25)$, being sure your work is clear.

Solution: We know that $f(1)=0.841$ and have $f^{\prime}(1) \approx 1.188$. We can therefore estimate that

$$
f(1.25) \approx 0.841+(0.25)(1.188)=1.138
$$

d. [2 points] Based on your work in (a) and (b), is your estimate in (c) an over- or underestimate? Explain.
Solution: Because $f^{\prime \prime}(1) \approx 1.388$, we expect that the actual slope between $x=1$ and $x=1.25$ is more than our value of 1.388 , and thus that this is an underestimate for the actual value of $f(1.25)$.

