5. [12 points] A paperback book (definitely not a valuable calculus textbook, of course) is dropped from the top of Dennison hall (which is 40 m high) towards a very large, upward pointing fan. The average velocity of the book between time $t=0$ and later times is shown in the table of data below (in which t is in seconds and the velocities are in m / s).

$$
\begin{array}{r|ccccc}
\text { between } t=0 \text { seconds and } t= & 1 & 2 & 3 & 4 & 5 \\
\hline \text { average velocity is } & -5 & -10 & -11.67 & -9 & -7.2
\end{array}
$$

a. [8 points] Fill in the following table of values for the height $h(t)$ of the book (measured in meters). Show how you obtain your values.

| t | 0 | 1 | 2 | 3 | 4 | 5 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $h(t)$ | 40 | $\mathbf{3 5}$ | $\mathbf{2 0}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{4}$ |
| | | | | | | |

Solution: For each value, we use the definition of average velocity:

$$
\text { average velocity on }[0, a]=\frac{h(a)-h(0)}{a} \text {. }
$$

Thus, the average velocity between $t=0$ and $t=1$ gives us $h(1)-40=-5$, so $h(1)=35$. Similarly, between $t=0$ and $t=2$ we have $(h(2)-40) / 2=-10$, so that $h(2)=20$, etc.
b. [4 points] Based on your work from (a), is $h^{\prime \prime}(1)>0,<0$, or $=0$? Is $h^{\prime \prime}(3)>0,<0$, or $=0$? Explain.
Solution: A sketch of the function $h(t)$ given the data we found in (a) is shown below.

We see that $h(t)$ is concave down at $t=1$ and concave up at $t=3$. Thus $h^{\prime \prime}(1)<0$ and $h^{\prime \prime}(3)>0$.
Alternate solution: The average velocity between $t=0$ and $t=1$ is -5 and approximates $h^{\prime}(0.5)$. The average velocity between $t=1$ and $t=2$ is $(20-15) /(2-1)=-15 \approx h^{\prime}(1.5)$. Thus the velocity appears to be decreasing at $t=1$, so that $h^{\prime \prime}(1)<0$. Similarly we have $h^{\prime}(2.5) \approx-15$ and $h^{\prime}(3.5) \approx-1$, so $h^{\prime \prime}(3)>0$.

