7. [12 points] For each of the descriptions of a function \(f \) that follow, indicate which of the graphs below match the description. For each description there may be no, one, or several graphs that match; write \textbf{none} if no graphs match the description. You may need to use a graph more than once. In each case you should assume that \(f \) is defined only on the domain \([0, 2]\).

\begin{itemize}
 \item \(f''(x) < 0 \) for \(x < 1 \) and \(f''(x) > 0 \) for \(x > 1 \); \(f'(x) < 0 \) for \(x < 1 \) and \(f'(x) > 0 \) for \(x > 1 \); and \(f(x) \) is continuous everywhere except at \(x = 1 \).
 \begin{itemize}
 \item matching graph(s): \(A \)
 \end{itemize}
 \item \(f''(x) > 0 \) for all \(x \neq 1 \); \(f(x) < 0 \) for all \(x \neq 1 \); and \(f(x) \) is differentiable everywhere except at \(x = 1 \).
 \begin{itemize}
 \item matching graph(s): \(C, E \)
 \end{itemize}
 \item \(f''(x) < 0 \) for all \(x \neq 1 \); \(f'(x) < 0 \) for \(x < 1 \) and \(f'(x) > 0 \) for \(x > 1 \); and \(f(x) < 0 \) for all \(x \neq 1 \).
 \begin{itemize}
 \item matching graph(s): \textbf{none}
 \end{itemize}
 \item \(f''(x) < 0 \) for \(x < 1 \) and \(f''(x) > 0 \) for \(x > 1 \); \(f'(x) < 0 \) for \(x < 1 \) and \(f'(x) > 0 \) for \(x > 1 \); and \(f(x) \) is differentiable everywhere except at \(x = 1 \).
 \begin{itemize}
 \item matching graph(s): \(A, D \)
 \end{itemize}
\end{itemize}