8. [12 points] Let $P(d)$ be a function giving the total electricity that a solar array has generated, in kWH , between the start of the year and the end of the d th day of the year. Each of the following centences (a)-(d) expresses a mathematical equality in practical terms. For each, give a single mathematical equality involving P (and, as needed, its inverse and derivatives) that corresponds to the sentence.
a. [3 points] The end of the day on which the array had generated 3500 kWH of electricity was the end of the 4th of January.
Solution: $\quad P^{-1}(3500)=4 . \quad(P(4)=3500$ is equivalent, though the statement suggests that 3500 kWH is the independent variable, and so that the equation involving the inverse is the better for this statement.)
b. [3 points] At the end of January 4th, the array was generating electricity at a rate of 1000 kWH per day.
Solution: $\quad P^{\prime}(4)=1000$.
c. [3 points] When the array had generated 5000 kWH of electricity, it would take approximately half a day to generate an additional 1000 kWH of electricity.

$$
\text { Solution: } \quad\left(P^{-1}\right)^{\prime}(5000)=\frac{1}{2000} .\left(\text { Or, alternately, } P^{\prime}\left(P^{-1}(5000)\right)=2000 .\right)
$$

d. [3 points] At the end of January 30th, it would take approximately one day to generate an additional 2500 kWH of electricity.

$$
\text { Solution: } \quad P^{\prime}(30)=2500 .\left(\text { Or, } P^{\prime}(31)=2500 .\right)
$$

