4. [15 points] In the following problems, circle all of the statements that could be true and draw a line through all of the statements that could not be true, based on the given information. (Every statement should be either circled or crossed out.) No explanation is necessary.
a. [3 points] A brief table of values for $f(x)$ and $g(x)$ is given, rounded to 4 decimal places:

x	$f(x)$	$g(x)$
1.25	2.4414	1.1265
1.5	5.0625	1.1547
1.75	9.3789	1.1836

- $f(x)$ is exponential and $g(x)$ is a power function.
- $f(x)$ is a power function and $g(x)$ is exponential.
- $f(x)$ and $g(x)$ are both exponential.
b. [4 points] Suppose that $f(x)$ is a continuous function and $\lim _{x \rightarrow \infty} f(x)=2$.
- For all $x>10, f^{\prime \prime}(x)>0$ and $f^{\prime}(x)>0$.
- For all $x>10, f^{\prime \prime}(x)>0$ and $f^{\prime}(x)<0$.
- For all $x>10, f^{\prime \prime}(x)<0$ and $f^{\prime}(x)>0$.
- For all $x>10, f^{\prime \prime}(x)<0$ and $f^{\prime}(x)<0$.
c. [4 points] A rational function $r(x)$ is graphed below (with $A \neq B$):

- $r(x)=\frac{x^{2}}{(x+A)(x-B)}$
- $r(x)=\frac{x}{(x+A)(x-B)}$
- $r(x)=\frac{4 x^{2}}{(x+A)(x-B)}$
- $r(x)=\frac{x^{2}}{(x-A)(x+B)}$
d. [4 points] Consider the functions $f(x), g(x)$, and $h(x)$ graphed below.

- $f(x)=h^{\prime}(x)$
- $h(x)=f^{\prime}(x)$
- $h(x)=g^{\prime \prime}(x)$
- $f(x)=g^{\prime}(x)$

