3. [13 points] A wedge of cheese in Zack's refrigerator has become home to a colony of bacteria. Let $A(t)$ be the surface area of the colony (in cm^{2}) t days after the expiration date of the cheese.
a. [4 points] For the first 20 days after the expiration date, the surface area of the colony grows exponentially. During this time, it takes the colony 5 days to double. Write a formula for $A(t)$ on the domain $0 \leq t \leq 20$. (Your formula may involve an unknown constant, but be sure to specify what this constant means in terms of bacteria.)

Solution:

$$
A(t)=A_{0} 2^{t / 5} \text {, where } A_{0} \text { is the initial surface area of the colony. }
$$

Beginning with $A(t)=A_{0} b^{t}$ we have that the surface area of the bacteria doubles in 5 days, so we set $2 A_{0}=A_{0} b^{5}$. Then $2^{1 / 5}=b$.
b. [3 points] How many days does it take for the surface area of the colony to triple? (Your answer does not need to be a whole number.)
Solution:

$$
5 \frac{\log (3)}{\log (2)} \approx 7.9248 \text { days }
$$

Beginning with our equation from (a) we set $3 A_{0}=A_{0} 2^{t / 5}$. Taking ln of both sides and simplifying we have $\ln 3 / \ln 2=t / 5$.
c. [3 points] Twenty days after the expiration date, the bacteria mysteriously begin to die off. The surface area of the colony on the cheese decreases linearly at a rate of $0.3 \mathrm{~cm}^{2} /$ day starting at $t=20$, and by $t=22$ the surface area has fallen to $9 \mathrm{~cm}^{2}$. Given that $A(t)$ is a continuous function, what was the surface area of the colony on the expiration date of the cheese?
Solution: Working backwards from $t=22$ we have that the surface area was $0.6 \mathrm{~cm}^{2}$ more at $t=20$ than at $t=22$. This means it was $9.6 \mathrm{~cm}^{2}$ at $t=20$ where the exponential growth stopped. Setting

$$
9.6=A_{0}(2)^{20 / 5}
$$

we have

$$
A_{0}=0.6 \mathrm{~cm}^{2}
$$

d. [3 points] What is $A^{\prime}(20)$, or is it undefined? Justify your answer with a rough sketch of $A(t)$.

Solution:

It is undefined because $A(t)$ is not differentiable due to corner on its graph at $t=20$.

