5. [12 points] Preparing a pot of soup for dinner, Billy heats the soup to boiling and then removes it from the stove. The function $H(t)$ gives the temperature of the soup in ${ }^{\circ} \mathrm{F}$ as a function of the number of minutes since it was removed from the stove. Assume that $H(0)=212$ and $H^{\prime}(0)=-2.7$, and that Billy's kitchen is carefully air-conditioned to remain at a comfortable $68^{\circ} \mathrm{F}$ at all times. Throughout this problem, be sure to include units in your answers, where applicable.
a. [3 points] Approximate $H(1.5)$.

Solution:

$$
H(1.5) \approx 212+1.5(-2.7)=207.95^{\circ} \mathrm{F}
$$

b. [3 points] Five minutes after removing the soup from the stove, Billy remarks to himself: "In the next 30 seconds, I expect the soup to cool by about $0.875^{\circ} \mathrm{F}$." Since he is both an excellent chef and a student of Math 115, his statement is consistent with the actual value of the derivative of the function H. Based on this information, find $H^{\prime}(5)$, and justify your answer.
Solution: If in 30 seconds the soup will cool by $0.875^{\circ} \mathrm{F}$, in a minute we would expect it to cool by approximately $1.75^{\circ} \mathrm{F}$, so

$$
H^{\prime}(5)=-1.75^{\circ} \mathrm{F} / \text { minute }
$$

c. [3 points] Assume that the concavity of $H(t)$ is the same on its entire domain. Based on your answer to part (b) and the given information, do you expect that the function $H(t)$ is concave up or concave down? Briefly explain your answer.
Solution: Between $t=0$ and $t=5$ the derivative has increased from approximately -2.7 to approximately -1.75 , so $H(t)$ should be concave up.
d. [3 points] Called off on important business, Billy leaves the pot of soup uneaten. Approximate $H^{\prime}(300)$. (You may use the practical interpretation of $H(t)$, but be sure to explain your answer.)
Solution:

$$
H^{\prime}(200) \approx 0^{\circ} \mathrm{F} / \text { minute } .
$$

The function $H(t)$ is concave up and decreasing, so after a long period of time, the slope of the graph should approach zero.

