4. [10 points] A motorcyclist heads north from an intersection after a stoplight turns green. The table below records the data on the motorcyclist's speedometer, measuring her velocity, $v(t)$, in feet per second, t seconds after the stoplight turns green. Assume that the motorcyclist does not slow down at any point during the interval of time we are measuring.

t	0	2	4	6
$v(t)$	0	5	15	30

a. [3 points] Recall that the acceleration function, $a(t)$, is the derivative of the velocity function. Use the table to estimate $a(2)$. Include units.
b. [3 points] The "jerk" $j(t)$ of the motorcycle is the derivative of the acceleration function. Use the table to estimate $j(2)$. Include units.
c. [4 points] Given everything we know about the motorcyclist, can we definitely conclude that $a(4) \leq 8$? If you answer YES, then explain your reasoning. If you answer NO, then sketch a graph of a velocity function $v(t)$ which is consistent with all the information in this problem, but which has $a(4)>8$.

