6. [13 points] Suppose $n(x)=\left(x+\frac{1}{2}\right) e^{x}$.
a. [4 points] Using the limit definition of the derivative, write an explicit expression for $n^{\prime}(2)$. Your expression should not contain the letter " n ". Do not try to evaluate your expression.

$$
n^{\prime}(2)=
$$

\qquad

The derivative of $n(x)$ is $n^{\prime}(x)=\left(x+\frac{3}{2}\right) e^{x}$.
b. [3 points] Using the given formula for $n^{\prime}(x)$, write an equation for the tangent line to the graph of $n(x)$ at $x=2$.
c. [3 points] Write an equation for the tangent line to the graph of $n(x)$ at $x=a$ where a is an unknown constant.
d. [3 points] Using your answer from (c), find a value of a so that the tangent line to the graph of $n(x)$ at $x=a$ passes through the origin.

