3. [14 points] Laura and Eddie are co-owners of a caffeinated soap factory. Let $M(x)$ denote the mass, in grams, of caffeine in a bar of soap that causes a typical customer's bloodstream caffeine content to be $x \mathrm{mg}$.
a. [4 points] Assuming that $M(x)$ is an invertible function, give a practical interpretation of the statement $M^{-1}(2)=12$.

Solution: If a bar of soap contains 2 grams of caffeine, it will cause a typical caffeine customer's bloodstream content to be 12 mg .
b. [4 points] Under the same assumption, give a practical interpretation of the statement $M^{\prime}(13)=0.7$.

Solution: If we compare a bar of soap that causes a typical customer's bloodstream caffeine content to be 13 mg with one that causes a typical customer's bloodstream caffeine content to be 14 mg , we expect the second bar to contain approximately .7 more grams of caffeine.
c. [6 points]

Laura and Eddie know that $M(x)$ is either a linear or an exponential function, but they aren't sure which. From experimenting, they know that $M(12)=2$ and $M(14)=4$. They need more data to determine which is correct. For each of the following hypothetical experimental results, circle EXPONENTIAL if the result shows that $M(x)$ could be exponential, circle LINEAR if the result shows that $M(x)$ could be linear, or circle EITHER if the result does not rule out either possibility. Assume Laura and Eddie's equipment gives experimental evidence which is accurate to within .1 mg .
i. Laura and Eddie discover that $M(x)$ is an invertible function.

EXPONENTIAL
LINEAR
EITHER
ii. Laura and Eddie discover that $M^{\prime}(17.2)=M^{\prime}(18.3)$.

EXPONENTIAL LINEAR EITHER

iii. Laura and Eddie discover that when there are 7 grams of caffeine in the soap, the caffeine level in a typical customer's bloodstream is roughly 15.6 mg .

EXPONENTIAL LINEAR EITHER

