5. [10 points] The figure below shows the graph a function $k(x)$ and its tangent line at a point $(a, 2)$. The average rate of change of $k(x)$ between $x=a$ and $x=6$ is $1 / 6$.

Find exact numerical values for the following. If it is not possible to find a value, write "NP". You do not need to show your work.
a. [2 points]

$$
a=\begin{aligned}
& 3 \\
& \hline
\end{aligned}
$$

Solution: The slope of the tangent line is $\frac{1}{3}$ and its y-intercept is 1 , so its equation is $y=\frac{1}{3} x+1$. Since $(a, 2)$ lies on the tangent line, $a=3$.
b. [2 points]

$$
b=-\quad 5 / 2
$$

Solution: We know that the average rate of change between $x=a$ and $x=6$ is $1 / 6$. This is the slope of the secant line connecting $(3,2)$ and $(6, b)$. After some algebra we obtain $b=\frac{5}{2}$.
c. [2 points]

$$
k^{\prime}(2)=\frac{\mathrm{NP}}{}
$$

Solution: We cannot find $k^{\prime}(2)$ (the y-coordinate of the given point is 2 , not the x coordinate).
d. [2 points]

$$
k^{\prime}(a)=\quad 1 / 3
$$

Solution: This is the slope of the tangent line, which is $\frac{1}{3}$.
e. [2 points]

$$
k^{\prime}(6)=\xrightarrow{\mathbf{N P}}
$$

Solution: We cannot find $k^{\prime}(6)$ since the given line is not tangent to the graph when $x=6$ (and the statement about average change refers to a secant line, not a tangent line).

