6. [13 points] Suppose $n(x)=\left(x+\frac{1}{2}\right) e^{x}$.
a. [4 points] Using the limit definition of the derivative, write an explicit expression for $n^{\prime}(2)$. Your expression should not contain the letter " n ". Do not try to evaluate your expression.
Solution:

$$
n^{\prime}(2)=\lim _{h \rightarrow 0} \frac{\left(2+h+\frac{1}{2}\right) e^{2+h}-\left(2+\frac{1}{2}\right) e^{2}}{h}
$$

The derivative of $n(x)$ is $n^{\prime}(x)=\left(x+\frac{3}{2}\right) e^{x}$.
b. [3 points] Using the given formula for $n^{\prime}(x)$, write an equation for the tangent line to the graph of $n(x)$ at $x=2$.
Solution: The slope is $\left(2+\frac{3}{2}\right) e^{2}$, and the y-coordinate when $x=2$ is $\left(2+\frac{1}{2}\right) e^{2}$, so using the point-slope formula for a line, we get the equation

$$
y-\left(2+\frac{1}{2}\right) e^{2}=\left(2+\frac{3}{2}\right) e^{2}(x-2)
$$

c. [3 points] Write an equation for the tangent line to the graph of $n(x)$ at $x=a$ where a is an unknown constant.
Solution: Using the same logic, we get

$$
y-\left(a+\frac{1}{2}\right) e^{a}=\left(a+\frac{3}{2}\right) e^{a}(x-a)
$$

d. [3 points] Using your answer from (c), find a value of a so that the tangent line to the graph of $n(x)$ at $x=a$ passes through the origin.
Solution: We want the line from the previous part of the problem to pass through $(0,0)$, so we have the equation

$$
-\left(a+\frac{1}{2}\right) e^{a}=\left(a+\frac{3}{2}\right) e^{a}(-a) .
$$

After dividing out the term e^{a}, this becomes a quadratic equation in a :

$$
a^{2}+\frac{1}{2} a-\frac{1}{2}=0
$$

Factoring or using the quadratic formula, we conclude that $a=-1$ or $a=\frac{1}{2}$.

