9. [7 points] The air in a factory is being filtered so that the quantity of a pollutant, P (in $\mathrm{mg} /$ liter), is decreasing exponentially. Suppose t is the time in hours since the factory began filtering the air. Also assume 20% of the pollutant is removed in the first five hours.
a. [2 points] What percentage of the pollutant is left after 10 hours?

Solution: Since 80% of the pollution is left after 5 hours, we see that 80% of 80% of the pollution will be left after 10 hours. This is 64%.
b. [5 points] How long is it before the pollution is reduced by 50% ?

Solution: Using the equation

$$
P(t)=P_{0} a^{t},
$$

and plugging in the known point $\left(5, .8 P_{0}\right)$, we see that

$$
.8 P_{0}=P_{0} a^{5} .
$$

So $a=(.8)^{\frac{1}{5}}$ and the formula is

$$
P(t)=P_{0}(.8)^{\frac{t}{5}} .
$$

We could also have gotten this formula without algebra, using the definition of decay rate and converting from intervals of 5 hours to intervals of hours.
We want to find a value of t such that $P(t)=.5 P_{0}$. Algebraically, this says that

$$
.5 P_{0}=P_{0}(.8)^{\frac{t}{5}} .
$$

Dividing out P_{0} and taking logarithms, we get

$$
\ln (.5)=\frac{t}{5} \ln (.8)
$$

so $t=5 \frac{\ln (.5)}{\ln (.8)} \approx 15.53$ hours. We could also solve this problem with the initial equation

$$
P(t)=P_{0} e^{k t} .
$$

If you did it that way, you should have gotten $k \approx-.0446$.
10. [5 points] Define a function

$$
f(x)= \begin{cases}\frac{-x^{3}+5 x^{2}}{x-5} & x \neq 5, \\ k & x=5 .\end{cases}
$$

a. [3 points] Find a value of k so that $f(x)$ is a continuous function for all real numbers x.

Solution: The formula for $f(x)$ when $x \neq 5$ simplifies algebraically to $-x^{2}$. Since we want $f(x)$ to be continuous when $x=5$, we need

$$
k=\lim _{x \rightarrow 5} f(x)=-\left(5^{2}\right)=-25 .
$$

b. [2 points] For the value of k you found, is $f(x)$ differentiable at $x=5$? Briefly explain.

