2. [12 points] A scientist is growing a very large quantity of mold. Initially, the mass of mold grows exponentially, but after many hours, the mass stabilizes at 24 kilograms.
Suppose that t hours after the scientist begins, the mass of mold, in kilograms, can be modeled by the function M defined by the equation

$$
M(t)= \begin{cases}0.41 e^{0.72 t} & \text { if } 0 \leq t \leq 5 \\ \frac{2 t^{3}}{a t^{b}+c} & \text { if } t>5\end{cases}
$$

a. [4 points] Find the value of k between 0 and 5 so that $M(k)=1$. Then interpret the equation $M(k)=1$ in the context of this problem. Use a complete sentence and include units.

Answer: $k=$ \qquad

Interpretation:

b. [8 points] Assuming that M is a continuous function of t, determine $\lim _{t \rightarrow \infty} M(t)$, and find the values of a, b, and c.

Answers: $\quad \lim _{t \rightarrow \infty} M(t)=$ \qquad

$$
a=
$$

\qquad

$$
b=
$$

\qquad

$$
c=
$$

\qquad

