7. [15 points] During the winter, the town of Waterville uses salt to keep the roads from freezing. Let $S=f(T)$ be the amount of salt, in tons, used on the roads of Waterville on a day when the average temperature is $T^{\circ} \mathrm{F}$. Let $C=g(S)$ be the cost, in thousands of dollars, of S tons of salt. Assume that both f and g are invertible functions that are differentiable everywhere.
a. [3 points] Interpret the equation $f^{-1}(4)=9$ in the context of this problem.

Use a complete sentence and include units.
b. [3 points] Interpret the equation $g(f(7))=2$ in the context of this problem. Use a complete sentence and include units.
c. [2 points] Yesterday, the average temperature in Waterville was $w^{\circ} \mathrm{F}$.

Give a single mathematical expression equal to the average temperature, in ${ }^{\circ} \mathrm{F}$, on a day when Waterville uses twice as much salt on the roads as it did yesterday.

Answer:
d. [4 points] Give a single mathematical equality involving the derivative of f which supports the following claim:
On a day when the average temperature is $3^{\circ} \mathrm{F}$, Waterville uses approximately 0.12 tons less salt on the roads than on a day when the average temperature is $1^{\circ} \mathrm{F}$.

Answer:

e. [3 points] In the equation $\left(g^{-1}\right)^{\prime}(8)=5$, what are the units on 8 and 5 ?

Answer: Units on 8 are

Answer: Units on 5 are

