1. [11 points] The table below gives several values of a continuous, invertible function f(x). Assume that the domain of both f(x) and f'(x) is the interval $(-\infty, \infty)$.

x	0	3	6	9	12	15	18	21	24
f(x)	-7	-3.5	-2	3	4.5	6	7	9	19

- a. [3 points] Evaluate each of the following.
 - (i) f(f(15))

Solution: f(f(15)) = f(6) = -2.

Answer: $f(f(15)) = \underline{\hspace{1cm} -2}$

(ii) $f^{-1}(3)$

Answer: $f^{-1}(3) = \underline{\hspace{1cm} 9}$

(iii) $f^{-1}(2f(12))$

Solution: $f^{-1}(2f(12)) = f^{-1}(2(4.5)) = f^{-1}(9) = 21.$

Answer: $f^{-1}(2f(12)) = \underline{\hspace{1cm}}$

b. [2 points] Compute the average rate of change of f on the interval $3 \le x \le 18$.

Solution: This average rate of change is equal to the difference quotient

$$\frac{f(18) - f(3)}{18 - 3} = \frac{7 - (-3.5)}{15} = \frac{10.5}{15} = \frac{7}{10} = 0.7.$$

Answer: 10.5/15 = 7/10 = 0.7

c. [2 points] Estimate f'(19).

Solution: We approximate f'(19) by the average rate of change of f on the interval $18 \le x \le 21$.

$$f'(19) \approx \frac{f(21) - f(18)}{21 - 18} = \frac{9 - 7}{3} = \frac{2}{3}.$$

Answer: $f'(19) \approx \underline{2/3} \approx 0.67$

d. [2 points] Let $g(x) = f^{-1}(x)$. Estimate g'(5).

Solution: We approximate g'(5) by the average rate of change of g(x) on the interval $4.5 \le x \le 6$.

$$g'(5) \approx \frac{g(6) - g(4.5)}{6 - 4.5} = \frac{f^{-1}(6) - f^{-1}(4.5)}{1.5} = \frac{15 - 12}{1.5} = \frac{3}{1.5} = 2.$$

Answer: $q'(5) \approx \underline{\hspace{1cm} 3/1.5 = 2}$

e. [2 points] Suppose f'(0) = 2. Find an equation for the tangent line to the graph of y = f(x) at x = 0.

Solution: This is the line with slope f'(0) = 2 that passes through the point (0, f(0)) = (0, -7). An equation for this line is y = 2x - 7.

Answer: y = 2x - 7