1. [11 points] The table below gives several values of a continuous, invertible function $f(x)$. Assume that the domain of both $f(x)$ and $f^{\prime}(x)$ is the interval $(-\infty, \infty)$.

x	0	3	6	9	12	15	18	21	24
$f(x)$	-7	-3.5	-2	3	4.5	6	7	9	19

a. [3 points] Evaluate each of the following.
(i) $f(f(15))$

Solution:
(ii) $f^{-1}(3)$
(iii) $f^{-1}(2 f(12))$

Solution:

$$
f^{-1}(2 f(12))=f^{-1}(2(4.5))=f^{-1}(9)=21 .
$$

Answer: $\quad f^{-1}(2 f(12))=$ \qquad
b. [2 points] Compute the average rate of change of f on the interval $3 \leq x \leq 18$.

Solution: This average rate of change is equal to the difference quotient

$$
\frac{f(18)-f(3)}{18-3}=\frac{7-(-3.5)}{15}=\frac{10.5}{15}=\frac{7}{10}=0.7 .
$$

Answer: $\quad 10.5 / 15=7 / 10=0.7$
c. [2 points] Estimate $f^{\prime}(19)$.

Solution: We approximate $f^{\prime}(19)$ by the average rate of change of f on the interval $18 \leq x \leq 21$.

$$
f^{\prime}(19) \approx \frac{f(21)-f(18)}{21-18}=\frac{9-7}{3}=\frac{2}{3} .
$$

Answer: $f^{\prime}(19) \approx$ \qquad
d. [2 points] Let $g(x)=f^{-1}(x)$. Estimate $g^{\prime}(5)$.

Solution: We approximate $g^{\prime}(5)$ by the average rate of change of $g(x)$ on the interval $4.5 \leq x \leq 6$.

$$
g^{\prime}(5) \approx \frac{g(6)-g(4.5)}{6-4.5}=\frac{f^{-1}(6)-f^{-1}(4.5)}{1.5}=\frac{15-12}{1.5}=\frac{3}{1.5}=2 .
$$

Answer: $g^{\prime}(5) \approx \quad 3 / 1.5=2$
e. [2 points] Suppose $f^{\prime}(0)=2$. Find an equation for the tangent line to the graph of $y=f(x)$ at $x=0$.

Solution: This is the line with slope $f^{\prime}(0)=2$ that passes through the point $(0, f(0))=$ $(0,-7)$. An equation for this line is $y=2 x-7$.

Answer:

$$
y=2 x-7
$$

