2. [12 points] A scientist is growing a very large quantity of mold. Initially, the mass of mold grows exponentially, but after many hours, the mass stabilizes at 24 kilograms.
Suppose that $t$ hours after the scientist begins, the mass of mold, in kilograms, can be modeled by the function $M$ defined by the equation

$$
M(t)= \begin{cases}0.41 e^{0.72 t} & \text { if } 0 \leq t \leq 5 \\ \frac{2 t^{3}}{a t^{b}+c} & \text { if } t>5\end{cases}
$$

a. [4 points] Find the value of $k$ between 0 and 5 so that $M(k)=1$. Then interpret the equation $M(k)=1$ in the context of this problem. Use a complete sentence and include units.

Solution: Because we want to find $k$ between 0 and 5 , we use the first piece of the formula for $M$ and solve for $k$ in the equation $0.41 e^{0.72 k}=1$.

$$
\begin{aligned}
0.41 e^{0.72 k} & =1 \\
e^{0.72 k} & =1 / 0.41 \approx 2.439 \\
0.72 k & =\ln (1 / 0.41) \approx 0.892 \\
k & =\ln (1 / 0.41) / 0.72 \approx 1.238
\end{aligned}
$$

Answer: $k=\frac{\ln (1 / 0.41)}{0.72} \approx 1.238$

## Interpretation:

Solution: 1.238 hours after the scientist begins, the mold has a mass of 1 kg .
b. [8 points] Assuming that $M$ is a continuous function of $t$, determine $\lim _{t \rightarrow \infty} M(t)$, and find the values of $a, b$, and $c$.

$$
\text { Solution: } \begin{aligned}
\frac{2}{a} & =24 \text { so } a=1 / 12 \approx 0.083 \\
0.41 e^{0.72 \cdot 5} & =\frac{2 \cdot 5^{3}}{5^{3} / 12+c} \\
0.41 e^{3.6} & =\frac{250}{125 / 12+c} \\
\frac{125}{12}+c & =\frac{250}{0.41 e^{3.6}} \\
c & =\frac{250}{0.41 e^{3.6}}-\frac{125}{12} \approx 6.244
\end{aligned}
$$

Answers: $\lim _{t \rightarrow \infty} M(t)=$ $\qquad$ $a=\quad 1 / 12 \approx 0.083$

$$
b=\square
$$

