4. [9 points] Let $P(v)= \begin{cases}v^{2} \sin \left(\frac{1}{v}\right)-v \sin (2) & \text { if } v \neq 0 \\ 0 & \text { if } v=0 .\end{cases}$
a. [5 points]

Use the limit definition of the derivative to write down an explicit expression for $P^{\prime}(0)$. Your answer should not include the letter P.
Do not attempt to evaluate or simplify the limit.

$$
P^{\prime}(0)=\quad \lim _{h \rightarrow 0} \frac{\left((0+h)^{2} \sin \left(\frac{1}{0+h}\right)-(0+h) \sin (2)\right)-0}{h}
$$

b. [4 points] Use your answer to (a) to estimate $P^{\prime}(0)$ to the nearest hundredth.

Be sure to include enough clear graphical or numerical evidence to justify your answer.

Solution: We plug in small values of h approaching 0 . Since the difference quotient is an even function of h, we need only check positive values of h (as evenness implies that negative h give precisely the same results).
$h=0.1$:

$$
\frac{0.1^{2} \sin (1 / 0.1)-0.1 \sin (2)-0}{0.1} \approx-0.964
$$

$h=0.01$:

$$
\frac{0.01^{2} \sin (1 / 0.01)-0.01 \sin (2)-0}{0.01} \approx-0.914
$$

$h=0.001$:

$$
\frac{0.001^{2} \sin (1 / 0.001)-0.001 \sin (2)-0}{0.001} \approx-0.908
$$

$h=0.0001:$

$$
\frac{0.0001^{2} \sin (1 / 0.0001)-0.0001 \sin (2)-0}{0.0001} \approx-0.909
$$

We see at this point that the numbers seem to have stabilized to the nearest hundredth at -0.91 .

Answer: $P^{\prime}(0) \approx$

