4. [9 points] Let \(P(v) = \begin{cases} v^2 \sin \left(\frac{1}{v} \right) - v \sin(2) & \text{if } v \neq 0 \\ 0 & \text{if } v = 0. \end{cases} \)

a. [5 points]
Use the limit definition of the derivative to write down an explicit expression for \(P'(0) \). Your answer should not include the letter \(P \). Do not attempt to evaluate or simplify the limit.

\[
P'(0) = \lim_{h \to 0} \frac{(0 + h)^2 \sin \left(\frac{1}{0+h} \right) - (0 + h) \sin(2)}{h}
\]

b. [4 points] Use your answer to (a) to estimate \(P'(0) \) to the nearest hundredth. Be sure to include enough clear graphical or numerical evidence to justify your answer.

\[\text{Solution:}\quad \text{We plug in small values of } h \text{ approaching 0. Since the difference quotient is an even function of } h, \text{ we need only check positive values of } h \text{ (as evenness implies that negative } h \text{ give precisely the same results).}
\]

\[
\begin{array}{ll}
h = 0.1: & \frac{0.1^2 \sin(1/0.1) - 0.1 \sin(2) - 0}{0.1} \approx -0.964 \\
h = 0.01: & \frac{0.01^2 \sin(1/0.01) - 0.01 \sin(2) - 0}{0.01} \approx -0.914 \\
h = 0.001: & \frac{0.001^2 \sin(1/0.001) - 0.001 \sin(2) - 0}{0.001} \approx -0.908 \\
h = 0.0001: & \frac{0.0001^2 \sin(1/0.0001) - 0.0001 \sin(2) - 0}{0.0001} \approx -0.909 \\
\end{array}
\]

We see at this point that the numbers seem to have stabilized to the nearest hundredth at \(-0.91\).

\[\text{Answer: } P'(0) \approx -0.91\]