5. [13 points] Jordan owns a 24-hour coffee shop. The coffee brewing rate (or CBR) at Jordan's coffee shop varies throughout the day. The CBR is highest at 6 AM, when coffee is brewed at a rate of 50 pounds of coffee per hour. It is lowest at 6 PM , when coffee is brewed at a rate of only 10 pounds of coffee per hour. Suppose that t hours after noon, the CBR, in pounds of coffee per hour, of Jordan's coffee shop can be modeled by a sinusoidal function $C(t)$ with period 24 hours.
a. [4 points] On the axes provided below, sketch a well-labeled graph of $C(t)$ for $0 \leq t \leq 24$.

b. [4 points] Find a formula for $C(t)$.

Answer: $C(t)=$

$$
-20 \sin \left(\frac{\pi}{12} t\right)+30
$$

c. [5 points] For how many hours each day is the CBR of Jordan's shop at least 40 pounds of coffee per hour? Remember to show your work.
Solution: We wish to find the two solutions to $C(t)=40$ for $0 \leq t \leq 24$. We start by finding any solution:

$$
\begin{aligned}
-20 \sin \left(\frac{\pi}{12} t\right)+30 & =40 \\
\sin \left(\frac{\pi}{12} t\right) & =-0.5 \\
\frac{\pi}{12} t & =\arcsin (-0.5)=-\pi / 6 \\
t & =-2 .
\end{aligned}
$$

One of the solutions we want is therefore $t=-2+24=22$, and by symmetry around the peak at 18 , the other is $t=14$.
Therefore, the CBR is at least 40 for the 8 hours between $t=14$ and $t=22$.

