5. [13 points] Jordan owns a 24-hour coffee shop. The coffee brewing rate (or CBR) at Jordan’s coffee shop varies throughout the day. The CBR is highest at 6 AM, when coffee is brewed at a rate of 50 pounds of coffee per hour. It is lowest at 6 PM, when coffee is brewed at a rate of only 10 pounds of coffee per hour. Suppose that \(t \) hours after noon, the CBR, in pounds of coffee per hour, of Jordan’s coffee shop can be modeled by a sinusoidal function \(C(t) \) with period 24 hours.

a. [4 points] On the axes provided below, sketch a well-labeled graph of \(C(t) \) for \(0 \leq t \leq 24 \).

![Graph of C(t) from 0 to 24 hours](Image)

b. [4 points] Find a formula for \(C(t) \).

Answer:

\[C(t) = \frac{-20 \sin \left(\frac{\pi}{12} t \right) + 30}{-20 \sin \left(\frac{\pi}{12} t \right) + 30} \]

c. [5 points] For how many hours each day is the CBR of Jordan’s shop at least 40 pounds of coffee per hour? Remember to show your work.

Solution: We wish to find the two solutions to \(C(t) = 40 \) for \(0 \leq t \leq 24 \). We start by finding any solution:

\[-20 \sin \left(\frac{\pi}{12} t \right) + 30 = 40 \]
\[\sin \left(\frac{\pi}{12} t \right) = -0.5 \]
\[\frac{\pi}{12} t = \arcsin(-0.5) = -\frac{\pi}{6} \]
\[t = -2. \]

One of the solutions we want is therefore \(t = -2 + 24 = 22 \), and by symmetry around the peak at 18, the other is \(t = 14 \).

Therefore, the CBR is at least 40 for the 8 hours between \(t = 14 \) and \(t = 22 \).

Answer: 8 hours