1. [8 points] The table below gives several values of the continuous, invertible, differentiable functions f(x) and g(x).

	x	1.8	1.9	2	2.1	2.2	2.3
	f(x)	2.5	2.35	2.2	2	1.8	1.7
	g(x)	1.6	1.75	1.8	1.9	2	2.2
(-1(0))							

a. [2 points] Compute $f(g^{-1}(2))$.

Answer: $f(g^{-1}(2)) =$ _____

b. [2 points] Estimate f'(2).

Answer: $f'(2) \approx$ _____

c. [2 points] Let $j(x) = g^{-1}(x)$. Estimate j'(1.9).

Answer: $j'(1.9) \approx$ _____

d. [2 points] Suppose p(x) is a function whose derivative is given by $p'(x) = \ln(x^3 + 11)$. Compute p'(f(2)).

Answer: p'(f(2)) = _____

- **2**. [6 points] Suppose a and b are constants with a > 3 and b > 0, and let $h(t) = a^{-bt}$.
 - **a**. [3 points] Find constants P_0 and k so that $h(t) = P_0 e^{kt}$. (Your answers may involve the constants a and/or b.)

Answer: $P_0 = _$ and $k = _$

- **b.** [3 points] Circle <u>all</u> the statements below that <u>must</u> be true about the function h(t). If none of the statements must be true, circle NONE OF THESE.
- i. The domain of h(t) is the interval $(-\infty, \infty)$.

ii. The range of h(t) is the interval $(-\infty, \infty)$.

iii. h(t) is an increasing function on its domain.

iv. h(t) is concave up on its domain.

v. t = 0 is a vertical asymptote of the graph of h(t).

vi. $\lim_{t\to\infty} h(t) = 0.$ vii. $\lim_{t\to-\infty} h(t) = 0.$