1. [8 points] The table below gives several values of the continuous, invertible, differentiable functions \(f(x) \) and \(g(x) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>1.8</th>
<th>1.9</th>
<th>2</th>
<th>2.1</th>
<th>2.2</th>
<th>2.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>2.5</td>
<td>2.35</td>
<td>2.2</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
</tr>
<tr>
<td>(g(x))</td>
<td>1.6</td>
<td>1.75</td>
<td>1.8</td>
<td>1.9</td>
<td>2</td>
<td>2.2</td>
</tr>
</tbody>
</table>

a. [2 points] Compute \(f(g^{-1}(2)) \).

Solution:

\[f(g^{-1}(2)) = f(2.2) = 1.8. \]

Answer: \(f(g^{-1}(2)) = 1.8 \)

b. [2 points] Estimate \(f'(2) \).

Solution: We approximate using difference quotients. Using the average rate of change between \(x = 1.9 \) and \(x = 2 \) we have \(f'(2) \approx \frac{2.2 - 2.15}{2 - 1.9} = -1.5 \), and using the average rate of change between \(x = 2 \) and \(x = 2.1 \), we have \(f'(2) \approx \frac{0.1 - 2}{0.1} = -2 \). Averaging these two estimates, we find the estimate \(f'(2) \approx -1.75 \).

Answer: \(f'(2) \approx -1.75 \)

c. [2 points] Let \(j(x) = g^{-1}(x) \). Estimate \(j'(1.9) \).

Solution: A table of values for \(j(x) \) is given by

<table>
<thead>
<tr>
<th>(x)</th>
<th>1.6</th>
<th>1.75</th>
<th>1.8</th>
<th>1.9</th>
<th>2</th>
<th>2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j(x))</td>
<td>1.8</td>
<td>1.9</td>
<td>2</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Estimating \(j'(1.9) \) using the average rate of change between \(x = 1.9 \) and \(x = 2 \) we find \(j'(2) \approx \frac{2.2 - 2.1}{2 - 1.9} = 1 \). (We obtain the same estimate using the interval from \(x = 1.8 \) to \(x = 1.9 \)).

Answer: \(j'(1.9) \approx 1 \)

d. [2 points] Suppose \(p(x) \) is a function whose derivative is given by \(p'(x) = \ln(x^3 + 11) \). Compute \(p'(2) \).

Solution:

\[p'(f(2)) = p'(2.2) = \ln((2.2)^3 + 11) = \ln(21.648) \approx 3.0749 \]

Answer: \(p'(f(2)) = \ln(21.648) \)

2. [6 points] Suppose \(a \) and \(b \) are constants with \(a > 3 \) and \(b > 0 \), and let \(h(t) = a^{-bt} \).

a. [3 points] Find constants \(P_0 \) and \(k \) so that \(h(t) = P_0 e^{kt} \). (Your answers may involve the constants \(a \) and/or \(b \)).

Solution: If \(P_0 e^{kt} = a^{b^t} \) for all \(t \), then \(P_0 = 1 \) and \(a^{-b} = e^k \), so \(k = \ln(a^{-b}) = -b \ln(a) \).

Alternatively, we can directly rewrite the original formula as \(h(t) = a^{-bt} = (e^{\ln a})^{bt} = e^{-b \ln(a) t} \).

Answer: \(P_0 = 1 \) and \(k = -b \ln(a) \)

b. [3 points] Circle all the statements below that **must** be true about the function \(h(t) \). If none of the statements must be true, circle **NONE OF THESE**.

i. The domain of \(h(t) \) is the interval \((-\infty, \infty)\).

ii. The range of \(h(t) \) is the interval \((-\infty, \infty)\).

iii. \(h(t) \) is an increasing function on its domain.

iv. \(h(t) \) is concave up on its domain.

v. \(t = 0 \) is a vertical asymptote of the graph of \(h(t) \).

vi. \(\lim_{t \to \infty} h(t) = 0 \).

vii. \(\lim_{t \to -\infty} h(t) = 0 \).

Answer: NONE OF THESE