1. [8 points] The table below gives several values of the continuous, invertible, differentiable functions $f(x)$ and $g(x)$.

x	1.8	1.9	2	2.1	2.2	2.3
$f(x)$	2.5	2.35	2.2	2	1.8	1.7
$g(x)$	1.6	1.75	1.8	1.9	2	2.2

a. [2 points] Compute $f\left(g^{-1}(2)\right)$.

Solution:

$$
f\left(g^{-1}(2)\right)=f(2.2)=1.8
$$

Answer: $\quad f\left(g^{-1}(2)\right)=$ 1.8
b. $[2$ points $]$ Estimate $f^{\prime}(2)$.

Solution: We approximate using difference quotients. Using the average rate of change between $x=1.9$ and $x=2$ we have $f^{\prime}(2) \approx \frac{2.2-2.35}{0.1}=-1.5$, and using the average rate of change between $x=2$ and $x=2.1$ we have $f^{\prime}(2) \approx \frac{2-2.2}{0.1}=-2$. Averaging these two estimates, we find the estimate $f^{\prime}(2) \approx-1.75$.

Answer: $f^{\prime}(2) \approx \quad-1.75$
c. [2 points] Let $j(x)=g^{-1}(x)$. Estimate $j^{\prime}(1.9)$.

Solution: A table of values for $j(x)$ is given by | x | 1.6 | 1.75 | 1.8 | 1.9 | 2 | 2.2 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $j(x)$ | 1.8 | 1.9 | 2 | 2.1 | 2.2 | 2.3 |

Estimating $j^{\prime}(1.9)$ using the average rate of change between $x=1.9$ and and $x=2$ we find $j^{\prime}(2) \approx \frac{2.2-2.1}{2-1.9}=1$. (We obtain the same estimate using the interval from $x=1.8$ to $x=1.9$.)

$$
\text { Answer: } \quad j^{\prime}(1.9) \approx \ldots
$$

d. [2 points] Suppose $p(x)$ is a function whose derivative is given by $p^{\prime}(x)=\ln \left(x^{3}+11\right)$. Compute $p^{\prime}(f(2))$.

Solution: $\quad p^{\prime}(f(2))=p^{\prime}(2.2)=\ln \left((2.2)^{3}+11\right)=\ln (21.648) \approx 3.0749$

$$
\text { Answer: } \quad p^{\prime}(f(2))=\ldots \ln (21.648)
$$

2. [6 points] Suppose a and b are constants with $a>3$ and $b>0$, and let $h(t)=a^{-b t}$.
a. [3 points] Find constants P_{0} and k so that $h(t)=P_{0} e^{k t}$. (Your answers may involve the constants a and/or b.)

Solution: If $P_{0} e^{k t}=a^{-b t}$ for all t, then $P_{0}=1$ and $a^{-b}=e^{k}$, so $k=\ln \left(a^{-b}\right)=-b \ln (a)$.
Alternatively, we can directly rewrite the original formula as $h(t)=a^{-b t}=\left(e^{\ln a}\right)^{-b t}=e^{-b \ln (a) t}$.
Answer: $P_{0}=$

$$
1 \quad \text { and } k=
$$

\qquad
b. [3 points] Circle all the statements below that must be true about the function $h(t)$. If none of the statements must be true, circle NONE OF THESE.

$$
\text { Solution: Since } a>1 \text { and } b>0, h(t) \text { is a decreasing exponential function. }
$$

i. The domain of $h(t)$ is the interval $(-\infty, \infty)$.
ii. The range of $h(t)$ is the interval $(-\infty, \infty)$.
iii. $h(t)$ is an increasing function on its domain.
iv. $h(t)$ is concave up on its domain.
v. $t=0$ is a vertical asymptote of the graph of $h(t)$.

$$
\text { vi. } \lim _{t \rightarrow \infty} h(t)=0
$$

vii. $\lim _{t \rightarrow-\infty} h(t)=0$.

NONE OF THESE

