1. [8 points] The table below gives several values of the continuous, invertible, differentiable functions f(x) and g(x).

x	1.8	1.9	2	2.1	2.2	2.3
f(x)	2.5	2.35	2.2	2	1.8	1.7
g(x)	1.6	1.75	1.8	1.9	2	2.2
(-1(0))						

a. [2 points] Compute $f(g^{-1}(2))$.

Solution: $f(q^{-1}(2)) = f(2.2) = 1.8$. **Answer:** $f(q^{-1}(2)) =$ _____ 1.8

b. [2 points] Estimate f'(2).

Solution: We approximate using difference quotients. Using the average rate of change between x = 1.9 and x = 2 we have $f'(2) \approx \frac{2.2-2.35}{0.1} = -1.5$, and using the average rate of change between x = 2 and x = 2.1 we have $f'(2) \approx \frac{2-2.2}{0.1} = -2$. Averaging these two estimates, we find the estimate $f'(2) \approx -1.75$.

Answer:
$$f'(2) \approx -1.75$$

c. [2 points] Let $j(x) = g^{-1}(x)$. Estimate j'(1.9).

Solution: A table of values for j(x) is given by $\begin{array}{c} x & 1.6 \\ \hline j(x) & 1.8 \end{array}$ 1.61.751.8 1.9 $\mathbf{2}$ 2.22.1 1.9 2 2.2 2.3 Estimating j'(1.9) using the average rate of change between x = 1.9 and and x = 2 we find $j'(2) \approx \frac{2.2-2.1}{2-1.9} = 1$. (We obtain the same estimate using the interval from x = 1.8 to x = 1.9.)

Answer: $j'(1.9) \approx$ _____

d. [2 points] Suppose p(x) is a function whose derivative is given by $p'(x) = \ln(x^3 + 11)$. Compute p'(f(2)).

Solution: $p'(f(2)) = p'(2.2) = \ln((2.2)^3 + 11) = \ln(21.648) \approx 3.0749$

Answer:
$$p'(f(2)) = \frac{\ln(21.648)}{\ln(21.648)}$$

- **2**. [6 points] Suppose a and b are constants with a > 3 and b > 0, and let $h(t) = a^{-bt}$.
 - **a**. [3 points] Find constants P_0 and k so that $h(t) = P_0 e^{kt}$. (Your answers may involve the constants a and/or b.)

Solution: If $P_0e^{kt} = a^{-bt}$ for all t, then $P_0 = 1$ and $a^{-b} = e^k$, so $k = \ln(a^{-b}) = -b\ln(a)$. Alternatively, we can directly rewrite the original formula as $h(t) = a^{-bt} = (e^{\ln a})^{-bt} = e^{-b\ln(a)t}$.

b. [3 points] Circle all the statements below that must be true about the function h(t). If none of the statements must be true, circle NONE OF THESE.

Solution: Since a > 1 and b > 0, h(t) is a decreasing exponential function.

- The domain of h(t) is the interval $(-\infty, \infty)$. i.
- v. t = 0 is a vertical asymptote of the graph of h(t).
- The range of h(t) is the interval $(-\infty, \infty)$. ii.

iii. h(t) is an increasing function on its domain.

iv. h(t) is concave up on its domain.

vi.
$$\lim_{t \to \infty} h(t) = 0.$$

vii.
$$\lim_{t \to -\infty} h(t) = 0.$$