4. [10 points] For each of the following, give a formula for a single function satisfying all of the listed properties. If there is no function satisfying all the properties, circle no SUCH FUNCTION Exists.
Note: If "NO SUCH FUNCTION Exists" is circled, then any formula you have written will not be graded.
a. [3 points] A polynomial $p(t)$ with the following three properties:

- The degree of $p(t)$ is three.
- $p(t) \rightarrow-\infty$ as $t \rightarrow \infty$.
- $p(0)=-4$.

Solution: Note that the second property implies that the leading coefficient of the polynomial is negative, and the third property implies that, when written in standard form, the constant term of $p(t)$ is -4 . So one example is $p(t)=-t^{3}-4$.

Answer: $p(t)=\ldots-t^{3}-4$ OR Circle: no such function exists
b. [3 points] An exponential function $q(v)$ with the following three properties:

- $q(1)=3$.
- $\lim _{v \rightarrow 0} q(v)=12$.
- $\lim _{v \rightarrow \infty} q(v)=0$.

Solution: Since exponential functions are continuous, the second property implies that $q(0)=12$. So $q(v)$ is exponential with initial value 12 and decay factor equal to $\frac{q(1)}{q(0)}=\frac{3}{12}=\frac{1}{4}$. Therefore q must be the function given by $q(v)=12\left(\frac{1}{4}\right)^{v}$.

Answer: $q(v)=12\left(\frac{1}{4}\right)^{v} \quad$ OR Circle: no Such function exists
c. [4 points] A rational function $r(x)$ with the following three properties:

- The line $x=2$ is a vertical asymptote of the graph of $y=r(x)$.
- The line $y=-3$ is a horizontal asymptote of the graph of $y=r(x)$.
- $r(5)=0$.

Solution: These properties imply that $r(x)$ can be written as a quotient of polynomials $\frac{p(x)}{q(x)}$ such that $(x-2)$ is a factor of $q(x)$, the ratio of the leading term of $p(x)$ to that of $q(x)$ is -3 , and $(x-5)$ is a factor of $p(x)$. There are many possibilities, but one example is $r(x)=\frac{-3(x-5)}{x-2}$.

Answer: $\quad r(x)=\Longrightarrow \quad \frac{-3(x-5)}{x-2} \quad$ OR Circle: no such function Exists

