7. [10 points] Note that the situations described in parts a. and b. on this page are not related to each other.

a. [6 points] A dose of a total of 1.2 milliliters of a drug is injected into a patient steadily for 0.3 seconds. At the end of this time, the quantity of the drug in the body starts to decay exponentially, decreasing by 0.18 percent per second. Let $Q(t)$ be the quantity of the drug in the body, in milliliters, t seconds after the injection begins. The function $Q(t)$ can be described using a piecewise-defined formula, as shown below. Use the description above to fill in the four answer blanks provided below with appropriate formulas and bounds so that the function $Q(t)$ is continuous for all $t > 0$.

$$
\text{Answer: } Q(t) = \begin{cases} \\
\text{if } 0 < t \leq \hspace{1cm} \\
\text{if } \hspace{1cm} < t.
\end{cases}
$$

b. [4 points] Suppose that someone studying parking habits at U-M during the 2015-16 school year makes the following statement: “During this school year, the number of cars that arrive on campus before 8 am has increased by 25% every thirty days.”

Let $C(d)$ be the number of cars that arrive on campus before 8 am on the dth day of the school year. Which of the formulas below model the situation described in the quote above, where K is some positive constant? (Circle all correct answers. Or circle none of these.)

- $C(d) = K(0.25)^{d/30}$
- $C(d) = K(1.25)^{d/30}$
- $C(d) = K(0.8)^{-d/30}$
- $C(d) = K + (0.25/30)^d$
- $C(d) = K + (1.25/30)^d$
- $C(d) = K + 0.25d$
- $C(d) = K e^{1.25d}$
- $C(d) = K e^{0.25d}$
- $C(d) = K e^{\ln(1.25)d/30}$
- $C(d) = K e^{\ln(0.25)d/30}$
- $C(d) = K d^{1.25}$
- $C(d) = K d^{0.25}$
- $C(d) = K + (0.25)^d$
- $C(d) = 1.25 \sin(\frac{\pi d}{15}) + K$
- $C(d) = 1.25 \cos(\frac{\pi d}{15}) + K$
- $C(d) = K(0.25/30)^d$
- $C(d) = K + (1.25)^{d/30}$
- NONE OF THESE