3. [4 points] Let $h(x)=(x+3) e^{2 x-2}$. Then the derivative of h is given by the formula $h^{\prime}(x)=$ $(2 x+7) e^{2 x-2}$. Find an equation for the tangent line to the graph of $y=h(x)$ at $x=1$.
Solution: Because

$$
\begin{aligned}
h(1)=(1+3) e^{2(1)-2} & =4 \\
h^{\prime}(1)=(2(1)+7) e^{2(1)-2} & =9
\end{aligned}
$$

the tangent line has slope 9 and goes through the point $(1,4)$, so to get the formula for the tangent line:

$$
\begin{array}{r}
y-4=9(x-1) \\
y=9 x-5
\end{array}
$$

Answer: $y=\square 9 x-5$
4. [10 points] Consider the function g defined by $g(x)= \begin{cases}\frac{1}{e^{x}-1} & \text { if } x<\frac{1}{2} \\ \cos \left(x^{x}\right) & \text { if } \frac{1}{2} \leq x<5 \\ \frac{x^{2}}{(x-1)(6-x)} & \text { if } x \geq 5 .\end{cases}$
a. [5 points] Use the limit definition of the derivative to write an explicit expression for $g^{\prime}(3)$. Your answer should not involve the letter g. Do not attempt to evaluate or simplify the limit. Please write your final answer in the answer box provided below.

$$
\text { Solution: } \quad g^{\prime}(3)=\lim _{h \rightarrow 0} \frac{\cos \left((3+h)^{3+h}\right)-\cos \left(3^{3}\right)}{h}
$$

Answer: $g^{\prime}(3)=\lim _{h \rightarrow 0} \frac{\cos \left((3+h)^{3+h}\right)-\cos \left(3^{3}\right)}{h}$
b. [3 points] Find all vertical asymptotes of the graph of $g(x)$. If there are none, write nONE.

Solution: Note that $x=1$ is *not* a vertical asymptote because the third piece of the formula for $g(x)$ is only valid for $x \geq 5$. The vertical asymptotes are $x=0$ and $x=6$.

$$
\text { Answer: } \quad x=0, x=6
$$

c. [2 points] Determine $\lim _{x \rightarrow \infty} g(x)$. If the limit does not exist, write DNE.

$$
\text { Solution: } \lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{x^{2}}{(x-1)(6-x)}=\lim _{x \rightarrow \infty} \frac{x^{2}}{-x^{2}+7 x-6}=-1 \text {. }
$$

Answer:

