7. [10 points] Note that the situations described in parts a. and b. on this page are not related to each other.
a. [6 points] A dose of a total of 1.2 milliliters of a drug is injected into a patient steadily for 0.3 seconds. At the end of this time, the quantity of the drug in the body starts to decay exponentially, decreasing by 0.18 percent per second. Let $Q(t)$ be the quantity of the drug in the body, in milliliters, t seconds after the injection begins.
The function $Q(t)$ can be described using a piecewise-defined formula, as shown below. Use the description above to fill in the four answer blanks provided below with appropriate formulas and bounds so that the function $Q(t)$ is continuous for all $t>0$.

$$
\text { Answer: } Q(t)=\left\{\begin{array}{cc}
\frac{4 t}{} & \text { if } 0<t \leq \frac{0.3}{} \\
\frac{1.2(0.9982)^{t-0.3}}{} & \text { if } \frac{0.3}{}<t .
\end{array}\right.
$$

b. [4 points] Suppose that someone studying parking habits at U-M during the 2015-16 school year makes the following statement:
"During this school year, the number of cars that arrive on campus before 8 am has increased by 25% every thirty days."

Let $C(d)$ be the number of cars that arrive on campus before 8 am on the d th day of the school year. Which of the formulas below model the situation described in the quote above, where K is some positive constant? (Circle all correct answers. Or circle none of these.)

$$
\begin{array}{lll}
C(d)=K(0.25)^{d / 30} & C(d)=K(1.25 / 30)^{d} & C(d)=K+(0.25 / 30)^{d} \\
\hline C(d)=K(1.25)^{d / 30} & C(d)=K(0.8)^{-d / 30} & C(d)=K+(1.25 / 30)^{d} \\
C(d)=K e^{1.25 d} & C(d)=K(4)^{-d / 30} & C(d)=K+0.25 d \\
C(d)=K e^{0.25 d} & C(d)=K d^{1.25} & C(d)=K+0.25 d / 30 \\
\hline C(d)=K e^{\ln (1.25) d / 30} & C(d)=K d^{0.25} & C(d)=1.25 \sin \left(\frac{\pi d}{15}\right)+K \\
C(d)=K e^{\ln (0.25) d / 30} & C(d)=K+(0.25)^{d / 30} & C(d)=1.25 \cos \left(\frac{\pi d}{15}\right)+K \\
C(d)=K(0.25 / 30)^{d} & C(d)=K+(1.25)^{d / 30} & \text { NONE OF THESE }
\end{array}
$$

