9. [7 points] Consider the function $f(x)$ defined by

$$f(x) = \begin{cases}
xe^{Ax} + B & \text{if } x < 3 \\
C(x-3)^2 & \text{if } 3 \leq x \leq 5 \\
\frac{130}{x} & \text{if } x > 5.
\end{cases}$$

Suppose $f(x)$ satisfies all of the following:

- $f(x)$ is continuous at $x = 3$.
- $\lim_{{x \to 5^+}} f(x) = 2 + \lim_{{x \to 5^-}} f(x)$.
- $\lim_{{x \to -\infty}} f(x) = -4$.

Find the values of A, B, and C.

Show your work. You must give exact answers. Do not use decimal approximations.

For example, 0.333333333 would not be an acceptable answer if the answer were $\frac{1}{3}$.

Solution: Because $f(x)$ is continuous at $x = 3$ (the first property),

$$\lim_{{x \to 3^-}} f(x) = \lim_{{x \to 3^+}} f(x).$$

So we have $3e^{3A} + B = C(3-3)^2 = 0$ and thus $3e^{3A} = -B$ (*).

Now, by the second property, we have

$$\lim_{{x \to 5^+}} f(x) = 2 + \lim_{{x \to 5^-}} f(x),$$

so

$$\frac{130}{5} = 2 + C(5-3)^2$$

$$26 = 2 + 4C$$

$$24 = 4C$$

$$6 = C$$

Thus $C = 6$.

Note that if $\lim_{{x \to -\infty}} xe^{Ax}$ exists, then it is equal to 0 (and $A < 0$). By the third property, we therefore see that

$$-4 = \lim_{{x \to -\infty}} f(x) = \lim_{{x \to -\infty}} (xe^{Ax} + B) = 0 + B = B.$$

So, $B = -4$, and using equation (*) above, we see that $3e^{3A} = -(-4)$ so $e^{3A} = \frac{4}{3}$ and

$$A = \frac{1}{3} \ln\left(\frac{4}{3}\right)$$

Answer: $A = \frac{1}{3} \ln\left(\frac{4}{3}\right)$, $B = -4$, and $C = 6$.