1. [19 points] The graphs of the functions $f(x)$ and $g(x)$ are shown below.

Note that the graph of $f(x)$ is linear for $x<-2$ and $x>2$, and $g(x)$ is linear on $-3<x<1$ and $1<x<3$.
For each of the following parts, find the given limit. If any of the quantities do not exist (including the case of limits that diverge to ∞ or $-\infty$), write DNE. If the limit cannot be found based on the information given, write not enough info. You do not need to show any work.
a. [2 points] Find $\lim _{x \rightarrow-1} f(x)$.

$$
\lim _{x \rightarrow-1} f(x)=
$$

\qquad
b. [2 points] Find $\lim _{t \rightarrow 2^{-}} 2(f(t)-3)$.

$$
\lim _{t \rightarrow 2^{-}} 2(f(t)-3)=
$$

\qquad
c. [2 points] Find $\lim _{x \rightarrow 1} f(x) g(x)$.

$$
\lim _{x \rightarrow 1} f(x) g(x)=
$$

\qquad
d. [2 points] Find $\lim _{x \rightarrow \infty} f\left(e^{-x}\right)$.

$$
\lim _{x \rightarrow \infty} f\left(e^{-x}\right)=
$$

\qquad
e. $[2$ points $]$ Find $\lim _{x \rightarrow 2^{+}} g^{-1}(x)$.

$$
\lim _{x \rightarrow 2^{+}} g^{-1}(x)=
$$

\qquad
f. [2 points] Find $\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}$.

$$
\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=
$$

\qquad

The graphs of the functions $f(x)$ and $g(x)$ are included here for your convenience.

g. [3 points] Find all the values of x with $-5<x<4$ at which the function $f(x)$ is not continuous.

Answer:

h. [2 points] What is the range of $y=g(x)$?

Answer:

i. [2 points] For which of the following values of x is $f^{\prime}(x)>0$? Circle all that apply.

$$
x=-5 \quad x=-1 \quad x=1.5 \quad x=e \quad \text { NONE OF THESE }
$$

2. [5 points] Let

$$
K(p)=(1+\cos (p))^{1+2 p} .
$$

Use the limit definition of the derivative to write an explicit expression for $K^{\prime}(4)$. Your answer should not involve the letter K. Do not attempt to evaluate or simplify the limit. Please write your final answer in the answer box provided below.

Answer: $K^{\prime}(4)=$ \square

