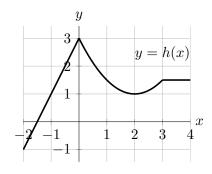
10. [4 points] Find all real numbers B and positive integers k such that the rational function

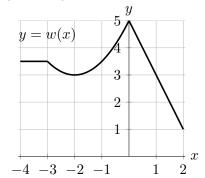
$$H(x) = \frac{9 + x^k}{16 - Bx^3}$$

satisfies the following two conditions:

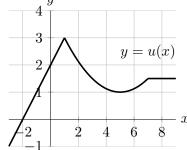
- H(x) has a vertical asymptote at x=2
- $\lim_{x\to\infty} H(x)$ exists.


If no such values exist, write NONE.

Answer: $B = \underline{\hspace{1cm}}$


Answer: $k = \underline{\hspace{1cm}}$

11. [4 points] A part of the graph of a function h(x) is given below.


In each of the following parts, the corresponding portion of the graph of a function obtained from h by one or more transformations is shown, together with a list of possible formulas for that function. In each case choose the one correct formula for the function shown. Note that the graphs are not all drawn at the same scale.

a. [2 points]

b. [2 points]

Answer: $w(x) = \underline{\hspace{1cm}}$

A.
$$h(-x) - 2$$
 F. $-h(x-2)$

F.
$$-h(x-2)$$

B.
$$-h(x) - 2$$
 G. $-h(-x+2)$

G.
$$-h(-x+2)$$

C.
$$-h(x) + 2$$

H.
$$-h(-x-2)$$

$$C. -n(x) + 2$$

I.
$$h(-x+2)$$

D.
$$h(-x) + 2$$

J.
$$h(-x-2)$$

E.
$$-h(x+2)$$

K. NONE OF THESE

$$-$$
 4 \top

Answer: $u(x) = \underline{\hspace{1cm}}$

A.
$$h(0.5x + 1)$$
 F. $h(2x - 1)$

$$F h(2r-1)$$

B.
$$h(0.5x - 1)$$
 G. $h(2x + 1)$

$$G. \ h(2x+1)$$

C.
$$h(0.5(x-1))$$
 H. $h(2(x-1))$ I. $h(2(x+1))$

$$h(2(x-1))$$

C.
$$h(0.5(x-1))$$

$$I h(2(x+1))$$

D.
$$h(0.5(x+1))$$

J.
$$h(0.5(x+0.5))$$

E.
$$h(0.5(x-0.5))$$
 K. None of these