4 .	[10 points] After the students planted the pine and the oak, the university has been
	monitoring the growth and health of the trees. Fifteen years after being planted, an invasion
	of cankerworms (a type of caterpillar) is found on the oak. It is predicted that the number of
	cankerworms (in hundreds) in the oak s weeks after the pest was detected is given by

$$C(s) = 2e^{0.35s}.$$

a.	[2 point	nts]]	Ву	what	percent	is the	e pop	oulation	of	cankerwor	ms	expected	to	grow	every
	week?														

Answer: The population grows by _______%

b. [3 points] Let F(m) be the number of cankerworms in the oak (in <u>thousands</u>) m <u>days</u> after the pest was detected. Find a formula for F(m) in terms of m only.

Answer: $F(m) = \underline{\hspace{1cm}}$

c. [5 points] A population of weevils (another insect) invades the pine. It is estimated that the population of weevils increases by 44 percent every 2 weeks. How many weeks does it take for the population of weevils to triple? Show all your work and round your answer to the nearest week.

Answer: