6. [11 points] A company designs chambers whose interior temperature can be controlled. Their chambers come in two models: Model A and Model B.
a. [5 points] The temperature in Model A goes from its minimum temperature of $-3^{\circ} \mathrm{C}$ to its maximum temperature of $15^{\circ} \mathrm{C}$ and returning to its minimum temperature three times each day. The temperature of this chamber at 10 am is $15^{\circ} \mathrm{C}$. Let $A(t)$ be the temperature (in ${ }^{\circ} \mathrm{C}$) inside this chamber t hours after midnight. Find a formula for $A(t)$ assuming it is a sinusoidal function.

Answer: $A(t)=$ \qquad
b. [6 points] Let $B(t)$ be the temperature (in ${ }^{\circ} C$) inside Model $\mathrm{B} t$ hours after midnight, where

$$
B(t)=5-3 \cos \left(\frac{3}{7} t+1\right) .
$$

Find the two smallest positive values of t at which the temperature in the chamber is $6^{\circ} \mathrm{C}$. Your answer must be found algebraically. Show all your work and give your answers in exact form.

Answer: $t=$ \qquad and

