7. [10 points] Two housecats, Jasper and Zander, escape from their house at the same time and travel along a straight line between their house and a tree. Let J(t) (respectively Z(t)) be Jasper's (respectively Zander's) distance, in feet, from the tree t seconds after escaping. The table below shows some of the values of J(t) and Z(t). Assume that J(t) is invertible.

t	6	17	22	31	37
J(t)	41	33	21	14	2
Z(t)	39	32	31	36	43

a. [2 points] What is Jasper's average velocity for $6 \le t \le 22$? Be sure to include units.

Answer:

b. [2 points] Estimate Z'(31). Remember to show your work.

Answer:

c. [3 points] Circle the one statement below that is best supported by the equation

$$Z(J^{-1}(8) - 4) = 34.$$

- i. 34 seconds after escaping, Zander is 4 feet closer to the tree than Jasper was 8 seconds after escaping.
- ii. Four seconds before Jasper is 8 feet from the tree, Zander is 34 feet from the tree.
- iii. When Jasper is 4 feet further from the tree than he was 8 seconds after escaping, Zander is 34 feet from the tree.
- iv. When Jasper is 4 feet closer to the tree than he was 8 seconds after escaping, Zander is 34 feet from the tree.
- v. Four seconds after Jasper is 8 feet from the tree, Zander is 34 feet from the tree.
- d. [3 points] Circle the one statement below that is best supported by the equation

$$(J^{-1})'(3) = -0.2.$$

- i. In the third second after leaving the house, Jasper travels about 0.2 feet.
- ii. When Jasper is 3 feet from the tree, he is traveling about 0.2 feet/second slower than he was one foot earlier.
- iii. Jasper gets about 1.5 feet closer to the tree during the third second after leaving the house.
- iv. It takes J asper about one-tenth of a second to go from 3 feet to 2.5 feet from the tree.
- v. One-half of a second before Jasper was 3 feet from the tree, he was about 2.9 feet from the tree.