3. [10 points] A group of students planted a pine tree and an oak tree alongside the Diag. Let $P(t)$ and $O(t)$ be the height (in feet) of the pine and the oak $t$ years after they were planted, where

$$
P(t)=170-165 A^{-0.02 t} \quad \text { and } \quad O(t)=\frac{140}{2+100 e^{-0.3 t}}
$$

where $A>1$ is a constant. For this problem, your answers should be in exact form or accurate up to the first two decimal places.
a. [2 points] How tall (in feet) were each of the trees when they were planted?

Answer: Pine: $\underline{5}$ Oak: $\frac{140}{102} \approx 1.372$
b. [4 points] Ten years after the trees were planted, the height of the pine was 38 ft . Find the value of $A$. Find your answer algebraically and show all your work.

## Answer:

$$
\begin{aligned}
170-165 A^{-0.2} & =38 \\
A^{-0.2} & =\frac{132}{165}=0.8 \\
A & =(0.8)^{-5}
\end{aligned}
$$

Answer: $A=\quad(0.8)^{-5} \approx 3.051$
c. [4 points] How many years after being planted does it take the oak to be 38 ft ? Find your answer algebraically and show all your work.

## Answer:

$$
\begin{aligned}
\frac{140}{2+100 e^{-0.3 t}} & =38 \\
140 & =76+3800 e^{-0.3 t} \\
e^{-0.3 t} & =\frac{64}{3800} \\
-0.3 t & =\ln \left(\frac{64}{3800}\right) \\
t & =-\frac{1}{0.3} \ln \left(\frac{64}{3800}\right) .
\end{aligned}
$$

Answer: $\quad-\frac{1}{0.3} \ln \left(\frac{64}{3800}\right) \approx 13.612$ years

