6. [11 points] A company designs chambers whose interior temperature can be controlled. Their chambers come in two models: Model A and Model B.
a. [5 points] The temperature in Model A goes from its minimum temperature of $-3^{\circ} \mathrm{C}$ to its maximum temperature of $15^{\circ} \mathrm{C}$ and returning to its minimum temperature three times each day. The temperature of this chamber at 10 am is $15^{\circ} \mathrm{C}$. Let $A(t)$ be the temperature (in ${ }^{\circ} \mathrm{C}$) inside this chamber t hours after midnight. Find a formula for $A(t)$ assuming it is a sinusoidal function.

The amplitude of $A(t)$ is $\frac{15-(-3)}{2}=9$. The period is 8 hours and the midline is $y=$ $\frac{15+(-3)}{2}=6$. We know that $A(10)=15$ a maximum value of $A(t)$. Then $A(t)=9 \cos \left(\frac{2 \pi}{8}(t-10)\right)+6$

Answer: $\quad A(t)=\begin{aligned} & 9 \cos \left(\frac{2 \pi}{8}(t-10)\right)+6\end{aligned}$
b. [6 points] Let $B(t)$ be the temperature (in ${ }^{\circ} C$) inside Model $\mathrm{B} t$ hours after midnight, where

$$
B(t)=5-3 \cos \left(\frac{3}{7} t+1\right) .
$$

Find the two smallest positive values of t at which the temperature in the chamber is $6^{\circ} \mathrm{C}$. Your answer must be found algebraically. Show all your work and give your answers in exact form.

$$
\begin{array}{rlrl}
5-3 \cos \left(\frac{3}{7} t+1\right) & =6 & \cos \left(\frac{3}{7} t+1\right) & =-\frac{1}{3} . \\
\frac{3}{7} t+1 & =\cos ^{-1}\left(-\frac{1}{3}\right) & \frac{3}{7} t+1=2 \pi-\cos ^{-1}\left(-\frac{1}{3}\right) \\
t & =\frac{7}{3}\left(\cos ^{-1}\left(-\frac{1}{3}\right)-1\right) & t & =\frac{7}{3}\left(2 \pi-\cos ^{-1}\left(-\frac{1}{3}\right)-1\right)
\end{array}
$$

