3. [13 points] Tom organizes another meeting of his Science Club, but this time only Anne and John can make it. The meeting is at 2 pm , so they both start walking from their houses to Tom's at 1 pm . At 1:18 pm, Anne realizes she forgot her wallet, so she goes back home to get it before heading over to Tom's house.
Anne's distance in kilometers, $A(t)$, and John's distance in kilometers, $J(t)$, to Tom's house t hours after 1 pm are given by the graph and the table below. Assume that both of them walk along a straight line.

t	0	0.2	0.4	0.5	0.8	0.9
$J(t)$	5.5	4.3	3.2	2.8	0.8	0

a. [1 point] How many kilometers from Tom's house is Anne's house?

Answer:
b. [2 points] Estimate $J^{\prime}(0.4)$. Show all your computations. Include units.

Answer:
c. [3 points] Rank John's average velocity over the time intervals
(I) $0.2 \leq t \leq 0.4$
(II) $0.5 \leq t \leq 0.9$
(III) $0.8 \leq t \leq 0.9$
from least to greatest. Show your work and indicate your final answer by filling in the blanks with I, II, III.

$$
\ldots \quad \leq
$$

d. [2 points] What was the total distance travelled by Anne?

Answer:

e. [2 points] At which of the following times was Anne's speed the largest? Circle the correct answer(s).

$$
t=0.05 \quad t=0.3 \quad t=0.4 \quad t=0.6 \quad t=1
$$

f. [3 points] On which of the following intervals is $A(t)$ invertible? Circle the correct answer(s).

$$
\begin{array}{cccc}
{[0,0.6]} & {[0.3,0.6]} & {[0.1,0.5]} & {[0.6,1]}
\end{array}
$$

