- 6. [10 points] All problems below are independent of each other.
 - **a**. [3 points] Let $m(x) = (1 + x^2)^{3x-4}$. Circle the limit below that represents m'(2). There is only one correct answer.

(A)
$$\lim_{h \to 0} \frac{(1+x^2)^{3x-4} + h - 25}{h}$$
(D)
$$\lim_{h \to 0} \frac{(1+(2+h)^2)^{3h+2} - 25}{h}$$
(B)
$$\lim_{h \to 0} \frac{(1+h^2)^{3h-4} - 25}{h}$$
(C)
$$\lim_{h \to 0} \frac{(1+(2+h)^2)^{3h-4} - 25}{h}$$
(F)
$$\lim_{h \to 2} \frac{(1+h^2)^{3h+2} - 25}{h}$$

b. [4 points] Let p(x) be a polynomial satisfying all the following properties:

(i)
$$p(x) = 0$$
 only at $x = -2, 0, 3$.
(ii) $\lim_{x \to -\infty} p(x) = -\infty$ and $\lim_{x \to \infty} p(x) = -\infty$.

Find one possible formula for p(x). There may be more than one correct answer.

Answer: p(x) =_____

- c. [3 points] Let h(x) be a rational function satisfying all the following properties:
 - (i) $\lim_{x\to 2} h(x) = 0$ and h is not defined at x = 2.

(ii)
$$\lim_{x \to \infty} h(x) = 0$$

Find one possible formula for h(x). There may be more than one correct answer.

Answer: h(x) =_____