6. [10 points] All problems below are independent of each other.
a. [3 points] Let $m(x)=\left(1+x^{2}\right)^{3 x-4}$. Circle the limit below that represents $m^{\prime}(2)$. There is only one correct answer.
(A) $\lim _{h \rightarrow 0} \frac{\left(1+x^{2}\right)^{3 x-4}+h-25}{h}$
(D) $\lim _{h \rightarrow 0} \frac{\left(1+(2+h)^{2}\right)^{3 h+2}-25}{h}$
(B) $\lim _{h \rightarrow 0} \frac{\left(1+h^{2}\right)^{3 h-4}-25}{h}$
(E) $\lim _{h \rightarrow 0} \frac{\left(5+h^{2}\right)^{3 h+2}-25}{h}$
(C) $\lim _{h \rightarrow 0} \frac{\left(1+(2+h)^{2}\right)^{3 h-4}-25}{h}$
(F) $\lim _{h \rightarrow 2} \frac{\left(1+h^{2}\right)^{3 h+2}-25}{h}$
b. [4 points] Let $p(x)$ be a polynomial satisfying all the following properties:
(i) $p(x)=0$ only at $x=-2,0,3$.
(ii) $\lim _{x \rightarrow-\infty} p(x)=-\infty$ and $\lim _{x \rightarrow \infty} p(x)=-\infty$.

Find one possible formula for $p(x)$. There may be more than one correct answer.

Answer: $p(x)=$ \qquad
c. [3 points] Let $h(x)$ be a rational function satisfying all the following properties:
(i) $\lim _{x \rightarrow 2} h(x)=0$ and h is not defined at $x=2$.
(ii) $\lim _{x \rightarrow \infty} h(x)=0$.

Find one possible formula for $h(x)$. There may be more than one correct answer.

Answer: $h(x)=$ \qquad

