- **6**. [10 points] All problems below are independent of each other.
 - **a.** [3 points] Let $m(x) = (1+x^2)^{3x-4}$. Circle the limit below that represents m'(2). There is only one correct answer.

Solution:

(A)
$$\lim_{h \to 0} \frac{(1+x^2)^{3x-4} + h - 25}{h}$$

(D)
$$\lim_{h \to 0} \frac{(1 + (2+h)^2)^{3h+2} - 25}{h}$$

(B)
$$\lim_{h \to 0} \frac{(1+h^2)^{3h-4} - 25}{h}$$
(C)
$$\lim_{h \to 0} \frac{(1+(2+h)^2)^{3h-4} - 25}{h}$$

(E)
$$\lim_{h\to 0} \frac{(5+h^2)^{3h+2}-25}{h}$$

(F)
$$\lim_{h\to 2} \frac{(1+h^2)^{3h+2}-25}{h}$$

- **b.** [4 points] Let p(x) be a polynomial satisfying all the following properties:
 - (i) p(x) = 0 only at x = -2, 0, 3.
 - (ii) $\lim_{x \to -\infty} p(x) = -\infty$ and $\lim_{x \to \infty} p(x) = -\infty$.

Find one possible formula for p(x). There may be more than one correct answer.

Solution:
$$p(x) = -x^2(x+2)(x-3)$$

- **c.** [3 points] Let h(x) be a rational function satisfying all the following properties:
 - (i) $\lim_{x\to 2} h(x) = 0$ and h is not defined at x = 2.
 - (ii) $\lim_{x \to \infty} h(x) = 0$.

Find one possible formula for h(x). There may be more than one correct answer.

Solution:
$$h(x) = \frac{(x-2)^2}{(x^2+1)(x-2)}$$