7. [10 points] An apple farmer wants to assess the damage done by a plague to the trees in his orchard. In order to do so, he installs cameras on a couple of small flying robots to film the damage done by the plague to the trees. Let $f(t)$ and $s(t)$ and be the height above the ground (in feet) of the first and second robot t seconds after they started recording.
a. [5 points] Let $f(t)=4-3 \cos \left(\frac{\pi}{5} t-\frac{2 \pi}{5}\right)$. Find the time(s) at which the first robot is 6 feet above the ground for $0 \leq t \leq 12$. Your answer(s) should be exact. Show all your work.
Solution: From the graph:

$$
\begin{aligned}
4-3 \cos \left(\frac{\pi}{5} t-\frac{2 \pi}{5}\right) & =6 \\
\cos \left(\frac{\pi}{5} t-\frac{2 \pi}{5}\right) & =-\frac{2}{3}
\end{aligned}
$$

$$
\frac{\pi}{5} t-\frac{2 \pi}{5}=\cos ^{-1}\left(-\frac{2}{3}\right)
$$

we see that there are two solutions.

$$
\begin{aligned}
t & =\frac{5}{\pi}\left(\cos ^{-1}\left(-\frac{2}{3}\right)+\frac{2 \pi}{5}\right) \\
\frac{\pi}{5} t-\frac{2 \pi}{5} & =2 \pi-\cos ^{-1}\left(-\frac{2}{3}\right)
\end{aligned}
$$

$$
t=2+\frac{5}{\pi}\left(2 \pi-\cos ^{-1}\left(-\frac{2}{3}\right)\right)
$$

$$
t=\frac{5}{\pi}\left(\cos ^{-1}\left(-\frac{2}{3}\right)+\frac{2 \pi}{5}\right), 2+\frac{5}{\pi}\left(2 \pi-\cos ^{-1}\left(-\frac{2}{3}\right)\right)
$$

b. [5 points] The graph of the sinusoidal function $s(t)$ is shown below only for $1 \leq t \leq 13$. Find a formula for $s(t)$.

The sinusoidal
$s(t)=-A \cos (B(t-h))+k$ has:

- Amplitude $=2$ then $A=2$.
- Midline $y=3$ then $k=3$.
- Period $=16$ then $B=\frac{2 \pi}{16}=\frac{\pi}{8}$.
- Horizontal shift $=3$ then $h=3$.

Hence
$s(t)=-2 \cos \left(\frac{\pi}{8}(t-3)\right)+3$
(other formulas are also possible).

